• Title/Summary/Keyword: Surveillance & Reconnaissance

Search Result 141, Processing Time 0.02 seconds

Development and Verification of UAV-UGV Hybrid Robot System (드론-지상 하이브리드 로봇 시스템 개발 및 검증)

  • Jongwoon Woo;Jihoon Kim;Changhyun Sung;Byeongwoo Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.233-240
    • /
    • 2023
  • In this paper, we proposed a hybrid type robot that simultaneously surveillance and reconnaissance on the ground and in the air. It was possible to expand the surveillance and reconnaissance range by expanding the surveillance and reconnaissance area of the ground robot and quickly moving to the hidden area through the drone. First, ground robots go to mission areas through drones and perform surveillance and reconnaissance missions for urban warfare or mountainous areas. Second, drones move ground robots quickly. It transmits surveillance and reconnaissance images of ground robots to the control system and performs reconnaissance missions at the same time. Finally, in order to secure the interoperability of these hybrid robots, basic performance and environmental performance were verified. The evaluation method was tested and verified based on the KS standards.

Study on the Tx/Rx Beam Performance of Planar Active Phased Array Antenna for Airborne as using the Near-field Measurement (근접전계 시험을 이용한 항공기용 평면형 능동 위상 배열 안테나 송수신 빔 성능 검증에 관한 연구)

  • Kim, Young-Wan;Lee, Jaemin;Lee, Yuri;Kim, JongPhil;Park, Jong-Kuk;Park, Kyuchul;Kim, Sunju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.61-68
    • /
    • 2018
  • In this paper, we described about methods and results to verify the Tx/Rx beam characteristics of a planar active phased array antenna as using a near-field measurement. The near-field system can effectively measure multiple beams and predict the performance degradation due to the partial failure of individual elements. Also, it can accurately predict the EIRP relating to detection performance of the active phased array radar. We briefly described the near-field measurement method to verify the Tx/Rx beam characteristics, and then verified the effectiveness of measurement method by analyzing the measured results.

Echelons Scale Identification Scheme of Surveillance and Reconnaissance Sensor Network (감시정찰 센서네트워크에서 제대규모 식별 기법)

  • Choi, Ji-Hye;Kwon, Tae-Wook
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.438-444
    • /
    • 2010
  • Surveillance and reconnaissance sensor network system is an application system based on ubiquitous sensor network technology. This technique is to avoid accidental close combat, to minimize the consumption of limited military resources and personnel, and to provide battlefield situational awareness information for the unit's future combat missions. In this paper, we have proposed a echelons scale identification scheme based on information obtained from surveillance and reconnaissance sensor network system.

Verification of Radiation and Beam-Steering Characteristics for Planar-Phased Array Radars Using Near-Field Beam Focusing (근전계 빔 집속 시험 기법을 활용한 평면위상배열레이다 시스템 복사 및 빔 조향 특성 검증)

  • Kim, Young-Wan;Lee, Jaemin;Jung, Chae-Hyun;Park, Jongkuk;Lee, Yuri;Kim, Jong-Phil;Kim, Sunju
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.160-168
    • /
    • 2019
  • In this study, we propose a verification method for a planar-phased array radar system using a near-field beam focusing(NFBF) test method. We then confirmed the validity of the results. The proposed method can be used to verify a radar system in the near-field range of twice the antenna aperture size, and this is done in the same manner as the field system performance test conducted in a non-outdoor electromagnetic anechoic chamber. The test configuration and procedure for verifying the NFBF using near-field energies were reviewed. In addition, the phase compensation values of additional individual channels were quantified through mathematical verification of the beam-steered NFBF test. Based on a theoretical verification, the actual NFBF test was performed and the validity of the test method was confirmed through comparison with ideal analytical results.

Target Localization Method using the Detection Signal Strength of Seismic Sensors for Surveillance Reconnaissance Sensor Network (감시정찰 센서 네트워크에서의 지진동센서 탐지 신호 세기를 이용한 표적 측위 방법)

  • Hyeon-Soo Im;In-Yong Hwang;Hyung-Seok Kim;Sang-Heon Shin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1291-1298
    • /
    • 2023
  • Surveillance reconnaissance sensor network is used for surveillance in wartime and area of operation. In this paper, we propose a target localization method using the detection signal strength of seismic sensors. Relay equipment calculates the target location using coordinate information and detection signal strength of the seismic sensors. Target localization error deviation due to environmental factors was minimized by subtracting the dynamic offset when calculating the target location. Field test shows improvement of target localization through reduction of errors. The average error was decreased to 3.62m. Up to 62% improved result was obtained compared to weighted centroid localization method.

A Study on the Effect of Atmosphere on the Space Surveillance Radar (우주감시레이다에 대한 지구 대기권 영향 분석 연구)

  • Moon, Hyun-Wook;Choi, Eun-Jung;Lee, Jonghyun;Yeum, Jaemeung;Kwon, Sewoong;Hong, Sungmin;Cho, Sungki;Park, Jang-Hyun;Jo, Jung Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.8
    • /
    • pp.648-659
    • /
    • 2018
  • In this study, both the altitude error due to the refraction and the range error due to the delay in the ionosphere with respect to the frequency are extracted according to the radar elevation to analyze the effect of atmosphere on the space surveillance radar. To achieve this, the radio refractivity profile is modeled using the measured data from domestic weather stations. Then, the altitude-error due to the refraction is extracted using the ray tracing method, and the range error in the ionosphere is extracted according to the frequency. Further, considerations for radar design with respect to the radar error characteristics are discussed based on the abroad space surveillance radar and proposed domestic space surveillance radar. This analysis of the error characteristics is expected to be utilized for the determination of radar location, range of steering, and frequency in the space surveillance radar design.

A Node Deployment Strategy Considering Environmental Factors and the Number of Nodes in Surveillance and Reconnaissance Sensor Network (감시정찰 센서네트워크에서 환경요소와 노드수량을 고려한 노드 배치 전략)

  • Kim, Yong-Hyun;Chung, Kwang-Sue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12B
    • /
    • pp.1670-1679
    • /
    • 2011
  • In the area of wireless sensor networks, sensor coverage and network connectivity problems are caused by a limited detection range and the communication distance of the nodes. To solve the coverage and connectivity problems, many studies are suggested, but most research is restricted to apply into the real environment because they didn't consider various environmental factors on wireless sensor network deployment. So in this paper, we propose a node deployment strategy considering environmental factors and the number of nodes in surveillance and reconnaissance sensor networks(SRSN). The proposed node deployment method divides the installation of the surveillance and reconnaissance sensor networks system into four steps such as identification of influences factors for node placement through IPB process, sensor node deployment based on sensing range, selection of monitoring site, and relay node deployment based on RF communication range. And it deploys the sensor nodes and relay nodes considered the features of the surveillance and reconnaissance sensor network system and environmental factors. The result of simulation indicates that the proposed node deployment method improves sensor coverage and network connectivity.

A Study on Sensor Collection Planning based on Target Scheduling and Deviation Correction for Strategic UAV Surveillance and Reconnaissance (전략급 무인기의 감시정찰을 위한 표적 스케줄링 및 편차 보정 기반 촬영계획 자동화 기술 연구)

  • Junghee Cho;Yunjeong Choi;Hayrim Lee;Soyoung Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.177-188
    • /
    • 2024
  • The strategic UAV for theater level ISR(Intelligence, Surveillance and Reconnaissance) mission typically has numerous ground targets over area of responsibility(AOR) or area of operation(AO). It is necessary to automatically incorporate these multitude of ground targets into mission planning process in order to collect ISR images before actual flight mission. In addition, weather information such as wind direction and/or velocity may have significant impacts on the qualities of collected sensor images, especially in SAR(Synthetic Aperture Radar) images. Thus weather factors in the operation altitude should also be considered in the mission planning stage. In this study, we propose a novel mission planning scheme based on target scheduling and deviation correction method incorporating weather factors.

Design of Micro-Satellite Constellation for Reconnaissance of Korean Peninsula (한반도 감시·정찰을 위한 초소형 위성군 설계)

  • Shin, Jinyoung;Hwang, Youngmin;Park, Sang-Young;Jeon, Soobin;Lee, Eunji;Song, Sung-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.6
    • /
    • pp.401-412
    • /
    • 2022
  • In this study, we investigated the design methods of satellite constellations to conduct near-real-time surveillance reconnaissance of the Korean Peninsula. Also, we designed satellite constellations utilizing the Walker-Delta method and repeat-ground-track method, and taking into account the target area and the feasible number of satellites. The constrains of the Electro-Optical and Synthetic Aperture Radar equipment were also considered in performance analysis. As a result, the designed constellation has mean revisit time of less than 30 min which enables near-real-time surveillance reconnaissance of the Korean Peninsula. This research provides the strategy to design the satellite constellation for reconnaissance. Furthermore, it contributes to suggesting an operating strategy for micro-satellites constellation and guidelines for establishing space force.

Design of L-Band-Phased Array Radar System for Space Situational Awareness (우주감시를 위한 L-Band 위상배열레이다 시스템 설계)

  • Lee, Jonghyun;Choi, Eun Jung;Moon, Hyun-Wook;Park, Joontae;Cho, Sungki;Park, Jang Hyun;Jo, Jung Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.3
    • /
    • pp.214-224
    • /
    • 2018
  • Continuous space development increases the occurrence probability of space hazards such as collapse of a satellite and collision between a satellite and space debris. In Korea, a space surveillance network with optical system has been developed; however, the radar technology for an independent space surveillance needs to be secured. Herein, an L-band phased array radar system for the detection and tracking of space objects is proposed to provide a number of services including collision avoidance and the prediction of re-entry events. With the mission analysis of space surveillance and the case analysis of foreign advanced radar systems, the radar parameters are defined and designed. The proposed radar system is able to detect a debris having a diameter of 10 cm at a maximum distance of 1,576 km. In addition, we confirmed the possibility of using the space surveillance mission for domestic satellites through the analysis of the detection area.