• Title/Summary/Keyword: Surrogate models

Search Result 112, Processing Time 0.084 seconds

Surrogate based model calibration for pressurized water reactor physics calculations

  • Khuwaileh, Bassam A.;Turinsky, Paul J.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1219-1225
    • /
    • 2017
  • In this work, a scalable algorithm for model calibration in nuclear engineering applications is presented and tested. The algorithm relies on the construction of surrogate models to replace the original model within the region of interest. These surrogate models can be constructed efficiently via reduced order modeling and subspace analysis. Once constructed, these surrogate models can be used to perform computationally expensive mathematical analyses. This work proposes a surrogate based model calibration algorithm. The proposed algorithm is used to calibrate various neutronics and thermal-hydraulics parameters. The virtual environment for reactor applications-core simulator (VERA-CS) is used to simulate a three-dimensional core depletion problem. The proposed algorithm is then used to construct a reduced order model (a surrogate) which is then used in a Bayesian approach to calibrate the neutronics and thermal-hydraulics parameters. The algorithm is tested and the benefits of data assimilation and calibration are highlighted in an uncertainty quantification study and requantification after the calibration process. Results showed that the proposed algorithm could help to reduce the uncertainty in key reactor attributes based on experimental and operational data.

Investigation of Thermophysical Properties of the Kerosene Using the Surrogate Model Fuel at Supercritical Conditions (초임계 영역에서 대체 모델 연료를 이용한 케로신의 열역학적 상태량 연구)

  • Kim, Kuk-Jin;Heo, Jun-Young;Sung, Hong-Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.823-833
    • /
    • 2010
  • For the study of thermophysical properties of kerosene for the liquid rocket and aviation fuels, the surrogate models are investigated. The density distributions based on the real gas equations of state(Soave modification of Redlich-Kwong and Peng-Robinson equation of state) and NIST SUPERTRAPP(extended corresponding state principle) are compared with the previous experimental results at supercritical conditions. The error range of thermophysical properties analyzed for the surrogate models as well. Peng-Robinson equation of state and extended corresponding state principle are especially accurate for the hydrocarbon fuels but the appropriate surrogate models need to be chosen to the operation conditions such as pressure and temperature.

Design of Screening Procedures Using a Surrogate Variable with Specified Producer's and Consumer's Risks (대용특성을 활용한 규준형 스크리닝 절차의 설계)

  • Hong, Sung-Hoon;Jung, Min-Young
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2009.10a
    • /
    • pp.3-10
    • /
    • 2009
  • When the measurement method for a performance variable is destructive or expensive, it is profitable to replace the performance variable with a highly correlated surrogate variable. In this paper we propose screening procedures using a surrogate variable with specified producer's and consumer's risks. Blending the basic concepts of acceptance sampling plans and screening procedures, the proposed model can be used effectively by quality professionals. Two models are considered: the normal model with dichotomous performance and continuous surrogate variables, and the bivariate normal model with continuous performance and surrogate variables. It is assumed the surrogate variable given the performance variable is normally distributed in the normal model, and performance and surrogate variables are jointly normally distributed in the bivariate normal model. For the two models, Producer's and consumer's risks are derived, and methods of finding the optimal screening procedures are presented. Numerical examples are also given.

  • PDF

Design of Screening Procedures Using a Surrogate Variable with Specified Producer's and Consumer's Risks (대용특성을 활용한 규준형 스크리닝 절차의 설계)

  • Hong, Sung-Hoon;Jung, Min-Young
    • Journal of Korean Society for Quality Management
    • /
    • v.37 no.4
    • /
    • pp.23-30
    • /
    • 2009
  • When the measurement method for a performance variable is destructive or expensive, it is profitable to replace the performance variable with a highly correlated surrogate variable. In this paper we propose screening procedures using a surrogate variable with specified producer's and consumer's risks. Blending the basic concepts of acceptance sampling plans and screening procedures, the proposed model can be used effectively by quality professionals. Two models are considered: the normal model with dichotomous performance and continuous surrogate variables, and the bivariate normal model with continuous performance and surrogate variables. It is assumed the surrogate variable given the performance variable is normally distributed in the normal model, and performance and surrogate variables are jointly normally distributed in the bivariate normal model. For the two models, producer's and consumer's risks are derived, and methods of finding the optimal screening procedures are presented. Numerical examples are also given.

Developing efficient model updating approaches for different structural complexity - an ensemble learning and uncertainty quantifications

  • Lin, Guangwei;Zhang, Yi;Liao, Qinzhuo
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.321-336
    • /
    • 2022
  • Model uncertainty is a key factor that could influence the accuracy and reliability of numerical model-based analysis. It is necessary to acquire an appropriate updating approach which could search and determine the realistic model parameter values from measurements. In this paper, the Bayesian model updating theory combined with the transitional Markov chain Monte Carlo (TMCMC) method and K-means cluster analysis is utilized in the updating of the structural model parameters. Kriging and polynomial chaos expansion (PCE) are employed to generate surrogate models to reduce the computational burden in TMCMC. The selected updating approaches are applied to three structural examples with different complexity, including a two-storey frame, a ten-storey frame, and the national stadium model. These models stand for the low-dimensional linear model, the high-dimensional linear model, and the nonlinear model, respectively. The performances of updating in these three models are assessed in terms of the prediction uncertainty, numerical efforts, and prior information. This study also investigates the updating scenarios using the analytical approach and surrogate models. The uncertainty quantification in the Bayesian approach is further discussed to verify the validity and accuracy of the surrogate models. Finally, the advantages and limitations of the surrogate model-based updating approaches are discussed for different structural complexity. The possibility of utilizing the boosting algorithm as an ensemble learning method for improving the surrogate models is also presented.

Effects of Latin hypercube sampling on surrogate modeling and optimization

  • Afzal, Arshad;Kim, Kwang-Yong;Seo, Jae-won
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.3
    • /
    • pp.240-253
    • /
    • 2017
  • Latin hypercube sampling is widely used design-of-experiment technique to select design points for simulation which are then used to construct a surrogate model. The exploration/exploitation properties of surrogate models depend on the size and distribution of design points in the chosen design space. The present study aimed at evaluating the performance characteristics of various surrogate models depending on the Latin hypercube sampling (LHS) procedure (sample size and spatial distribution) for a diverse set of optimization problems. The analysis was carried out for two types of problems: (1) thermal-fluid design problems (optimizations of convergent-divergent micromixer coupled with pulsatile flow and boot-shaped ribs), and (2) analytical test functions (six-hump camel back, Branin-Hoo, Hartman 3, and Hartman 6 functions). The three surrogate models, namely, response surface approximation, Kriging, and radial basis neural networks were tested. The important findings are illustrated using Box-plots. The surrogate models were analyzed in terms of global exploration (accuracy over the domain space) and local exploitation (ease of finding the global optimum point). Radial basis neural networks showed the best overall performance in global exploration characteristics as well as tendency to find the approximate optimal solution for the majority of tested problems. To build a surrogate model, it is recommended to use an initial sample size equal to 15 times the number of design variables. The study will provide useful guidelines on the effect of initial sample size and distribution on surrogate construction and subsequent optimization using LHS sampling plan.

Optimization of Rotor Blade Stacking Line Using Three Different Surrogate Models

  • Jang, Choon-Man;Samad, Abdus;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.2 s.41
    • /
    • pp.22-31
    • /
    • 2007
  • This paper describes the shape optimization of rotor blade in a transonic axial compressor rotor. Three surrogate models, Kriging, radial basis neural network and response surface methods, are introduced to find optimum blade shape and to compare the characteristics of object function at each optimal design condition. Blade sweep, lean and skew are considered as design variables and adiabatic efficiency is selected as an objective function. Throughout the shape optimization of the compressor rotor, the predicted adiabatic efficiency has almost same value for three surrogate models. Among the three design variables, a blade sweep is the most sensitive on the object function. It is noted that the blade swept to backward and skewed to the blade pressure side is more effective to increase the adiabatic efficiency in the axial compressor Flow characteristics of an optimum blade are also compared with the results of reference blade.

Shape Optimization of Axial Flow Fan Blade Using Surrogate Model (대리모델을 사용한 축류송풍기 블레이드의 형상 최적화)

  • Kim, Jin-Hyuk;Choi, Jae-Ho;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2440-2443
    • /
    • 2008
  • This paper presents a three dimensional shape optimization procedure for a low-speed axial flow fan blade with a weighted average surrogate model. Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model are discretized by finite volume approximations. Six variables from airfoil profile and lean are selected as design variables. 3D RANS solver is used to evaluate the objective functions of total pressure efficiency. Surrogate approximation models for optimization have been employed to find the optimal design of fan blade. A search algorithm is used to find the optimal design in the design space from the constructed surrogate models for the objective function. The total pressure efficiency is increased by 0.31% with the weighted average surrogate model.

  • PDF

Surrogate Model Based Approximate Optimization of Passive Type Deck Support Frame for Offshore Plant Float-over Installation

  • Lee, Dong Jun;Song, Chang Yong;Lee, Kangsu
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.131-140
    • /
    • 2021
  • The paper deals with comparative study of various surrogate models based approximate optimization in the structural design of the passive type deck support frame under design load conditions. The passive type deck support frame was devised to facilitate both transportation and installation of 20,000 ton class topside. Structural analysis was performed using the finite element method to evaluate the strength performance of the passive type deck support frame in its initial design stage. In the structural analysis, the strength performances were evaluated for various design load conditions. The optimum design problem based on surrogate model was formulated such that thickness sizing variables of main structure members were determined by minimizing the weight of the passive type deck support frame subject to the strength performance constraints. The surrogate models used in the approximate optimization were response surface method, Kriging model, and Chebyshev orthogonal polynomials. In the context of numerical performances, the solution results from approximate optimization were compared to actual non-approximate optimization. The response surface method among the surrogate models used in the approximate optimization showed the most appropriate optimum design results for the structure design of the passive type deck support frame.

Evaluation of Surrogate Models for Shape Optimization of Compressor Blades

  • Samad, Abdus;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.367-370
    • /
    • 2006
  • Performances of multiple surrogate models are evaluated in a turbomachinery blade shape optimization. The basic models, i.e., Response Surface Approximation, Kriging and Radial Basis Neural Network models as well as weighted average models are tested for shape optimization. Global data based errors for each surrogates are used to calculate the weights. These weights are multiplied with the respective surrogates to get the final weighted average models. The design points are selected using three level fractional factorial D-optimal designs. The present approach can help address the multi-objective design on a rational basis with quantifiable cost-benefit analysis.

  • PDF