• Title/Summary/Keyword: Surgical loupes

Search Result 5, Processing Time 0.021 seconds

Cleft Lip and Palate Repair Using a Surgical Microscope

  • Kato, Motoi;Watanabe, Azusa;Watanabe, Shoji;Utsunomiya, Hiroki;Yokoyama, Takayuki;Ogishima, Shinya
    • Archives of Plastic Surgery
    • /
    • v.44 no.6
    • /
    • pp.490-495
    • /
    • 2017
  • Background Cleft lip and palate repair requires a deep and small surgical field and is usually performed by surgeons wearing surgical loupes. Surgeons with loupes can obtain a wider surgical view, although headlights are required for the deepest procedures. Surgical microscopes offer comfort and a clear and magnification-adjustable surgical site that can be shared with the whole team, including observers, and easily recorded to further the education of junior surgeons. Magnification adjustments are convenient for precise procedures such as muscle dissection of the soft palate. Methods We performed a comparative investigation of 18 cleft operations that utilized either surgical loupes or microscopy. Paper-based questionnaires were completed by staff nurses to evaluate what went well and what could be improved in each procedure. The operating time, complication rate, and scores of the questionnaire responses were statistically analyzed. Results The operating time when microscopy was used was not significantly longer than when surgical loupes were utilized. The surgical field was clearly shared with surgical assistants, nurses, anesthesiologists, and students via microscope-linked monitors. Passing surgical equipment was easier when sharing the surgical view, and preoperative microscope preparation did not interfere with the duties of the staff nurses. Conclusions Surgical microscopy was demonstrated to be useful during cleft operations.

Optical Magnification Should Be Mandatory for Microsurgery: Scientific Basis and Clinical Data Contributing to Quality Assurance

  • Schoeffl, Harald;Lazzeri, Davide;Schnelzer, Richard;Froschauer, Stefan M.;Huemer, Georg M.
    • Archives of Plastic Surgery
    • /
    • v.40 no.2
    • /
    • pp.104-108
    • /
    • 2013
  • Background Microsurgical techniques are considered standard procedures in reconstructive surgery. Although microsurgery by itself is defined as surgery aided by optical magnification, there are no guidelines for determining in which clinical situations a microscope or loupe should be used. Therefore, we conducted standardized experiments to objectively assess the impact of optical magnification in microsurgery. Methods Sixteen participants of microsurgical training courses had to complete 2 sets of experiments. Each set had to be performed with an unaided eye, surgical loupes, and a regular operating microscope. The first set of experiments included coaptation of a chicken femoral nerve, and the second set consisted of anastomosing porcine coronary arteries. Evaluation of the sutured nerves and vessels were performed by 2 experienced microsurgeons using an operating microscope. Results The 16 participants of the study completed all of the experiments. The nerve coaptation and vascular anastomoses exercises showed a direct relationship of error frequency and lower optical magnification, meaning that the highest number of microsurgical errors occurred with the unaided eye. For nerve coaptation, there was a strong relationship (P<0.05) between the number of mistakes and magnification, and this relationship was very strong (P<0.01) for vascular anastomoses. Conclusions We were able to prove that microsurgical success is directly related to optical magnification. The human eye's ability to discriminate potentially important anatomical structures is limited, which might be detrimental for clinical results. Although not legally mandatory, surgeries such as reparative surgery after hand trauma should be conducted with magnifying devices for achieving optimal patient outcomes.

Use of elevator instruments when luxating and extracting teeth in dentistry: clinical techniques

  • Mamoun, John
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.43 no.3
    • /
    • pp.204-211
    • /
    • 2017
  • In dentistry, elevator instruments are used to luxate teeth, and this technique imparts forces to tooth particles that sever the periodontal ligament around tooth roots inside the socket and expand alveolar bone around tooth particles. These effects can result in extraction of the tooth particles or facilitate systematic forceps extraction of the tooth particles. This article presents basic oral surgery techniques for applying elevators to luxate teeth. Determination of the optimal luxation technique requires understanding of the functions of the straight elevator and the Cryer elevator, the concept of purchase points, how the design elements of elevator working ends and tips influence the functionality of an elevator, application of forces to tooth particles, sectioning teeth at furcations, and bone removal to facilitate luxation. The effectiveness of tooth particle luxation is influenced by elevator tip shape and size, the magnitude and the vectors of forces applied to the tooth particle by the tip, and sectioning and bone removal within the operating field. Controlled extraction procedures are facilitated by a dental operating microscope or the magnification of binocular surgical loupes telescopes, combined with co-axial illumination.

The path of placement of a removable partial denture: a microscope based approach to survey and design

  • Mamoun, John Sami
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.1
    • /
    • pp.76-84
    • /
    • 2015
  • This article reviews the topic of how to identify and develop a removable partial denture (RPD) path of placement, and provides a literature review of the concept of the RPD path of placement, also known as the path of insertion. An optimal RPD path of placement, guided by mutually parallel guide planes, ensures that the RPD flanges fit intimately over edentulous ridge structures and that the framework fits intimately with guide plane surfaces, which prevents food collecting empty spaces between the intaglio surface of the framework and intraoral surfaces, and ensures that RPD clasps engage adequate numbers of tooth undercuts to ensure RPD retention. The article covers topics such as the causes of obstructions to RPD intra-oral seating, the causes of food collecting empty spaces that may exist around an RPD, and how to identify if a guide plane is parallel with the projected RPD path of placement. The article presents a method of using a surgical operating microscope, or high magnification (6-8x or greater) binocular surgical loupes telescopes, combined with co-axial illumination, to identify a preliminary path of placement for an arch. This preliminary path of placement concept may help to guide a dentist or a dental laboratory technician when surveying a master cast of the arch to develop an RPD path of placement, or in verifying that intra-oral contouring has aligned teeth surfaces optimally with the RPD path of placement. In dentistry, a well-fitting RPD reduces long-term periodontal or structural damage to abutment teeth.

Learners' Responses to a Virtual Cadaver Dissection Nerve Course in the COVID Era: A Survey Study

  • Lisiecki, Jeffrey L.;Johnson, Shepard Peir;Grant, David;Chung, Kevin C.
    • Archives of Plastic Surgery
    • /
    • v.49 no.5
    • /
    • pp.676-682
    • /
    • 2022
  • Background Virtual education is an evolving method for teaching medical learners. During the coronavirus disease 2019 pandemic, remote learning has provided a replacement for conferences, lectures, and meetings, but has not been described as a method for conducting a cadaver dissection. We aim to demonstrate how learners perceive a virtual cadaver dissection as an alternative to live dissection. Methods A virtual cadaver dissection was performed to demonstrate several upper extremity nerve procedures. These procedures were livestreamed as part of an educational event with multimedia and interactive audience questions. Participants were queried both during and after the session regarding their perceptions of this teaching modality. Results Attendance of a virtual dissection held for three plastic surgery training institutions began at 100 and finished with 70 participants. Intrasession response rates from the audience varied between 68 and 75%, of which 75% strongly agreed that they were satisfied with the virtual environment. The audience strongly agreed or agreed that the addition of multimedia captions (88%), magnified video loupe views (82%), and split-screen multicast view (64%) was beneficial. Postsession response rate was 27%, and generally reflected a positive perspective about the content of the session. Conclusions Virtual cadaver dissection is an effective modality for teaching surgical procedures and can be enhanced through technologies such as video loupes and multiple camera perspectives. The audience viewed the virtual cadaver dissection as a beneficial adjunct to surgical education. This format may also make in-person cadaver courses more effective by improving visualization and allowing for anatomic references to be displayed synchronously.