• 제목/요약/키워드: Surgical Assistant Robot

검색결과 8건 처리시간 0.072초

중재 시술 적용을 위한 소형 연속체 로봇의 정역학 모델링 및 외부 측면 하중에 의한 변위 분석 (Static Modeling of a Miniaturized Continuum Robot for Surgical Interventions and Displacement Analysis under Lateral External Loads)

  • 김기영;우현수;조장호;신민기;서정욱
    • 로봇학회논문지
    • /
    • 제15권4호
    • /
    • pp.301-308
    • /
    • 2020
  • In this paper, we deal with the static modeling of a continuum robot that can perform surgical interventions. The proposed continuum robot is made of stainless steel wires and a multi lumen flexible tube using a thermoplastic elastomer. This continuum robot could be most severely deformed in physical contact with narrow external environments, when a lateral external force acts at the distal tip of the continuum robot. In order to predict the shape and displacement under the lateral external force loading, the forward kinematics, the statics modeling, the force-moment equilibrium equation, and the virtual work-energy method of the continuum robot are described. The deflection displacements were calculated using the virtual work-energy method, and the results were compared with the displacement obtained by the conventional cantilever beam theories. In conclusion, the proposed static modeling and the virtual work-energy method can be used in arrhythmia procedure simulations.

힘/토크 센서를 이용한 수술보조로봇의 원격중심운동 직접교시 알고리즘 연구 (Study on Direct Teaching Algorithm for Remote Center Motion of Surgical Assistant Robot using Force/Torque Sensor)

  • 김민효;진상록
    • 로봇학회논문지
    • /
    • 제15권4호
    • /
    • pp.309-315
    • /
    • 2020
  • This study shows a control strategy that acquires both precision and manipulation sensitivity of remote center motion with manual traction for a surgical assistant robot. Remote center motion is an essential function of a laparoscopic surgical robot. The robot has to keep the position of the insertion port in a three-dimensional space, and general laparoscopic surgery needs 4-DoF (degree-of-freedom) motions such as pan, tilt, spin, and forward/backward. The proposed robot consists of a 6-axis collaborative robot and a 2-DoF end-effector. A 6-axis collaborative robot performs the cone-shaped trajectory with pan and tilt motion of an end-effector maintaining the position of remote center. An end-effector deals with the remaining 2-DoF movement. The most intuitive way a surgeon manipulates a robot is through direct teaching. Since the accuracy of maintaining the remote center position is important, direct teaching is implemented based on position control in this study. A force/torque sensor which is attached to between robot and end-effector estimates the surgeon's intention and generates the command of motion. The predefined remote center position and the pan and tilt angles generated from direct teaching are input as a command for position control. The command generation algorithm determines the direct teaching sensitivity. Required torque for direct teaching and accuracy of remote center motion are analyzed by experiments of panning and tilting motion.

Design of a Compact Laparoscopic Assistant Robot;KaLAR

  • Lee, Yun-Ju;Kim, Jona-Than;Ko, Seong-Young;Lee, Woo-Jung;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2648-2653
    • /
    • 2003
  • This paper describes the development of a 3-DOF laparoscopic assistant robot system with motor-controlled bending and zooming mechanisms using the voice command motion control and auto-tracking control. The system is designed with two major criteria: safety and adaptability. To satisfy the safety criteria we designed the robot with optimized range of motion. For adaptability, the robot is designed with compact size to minimize interference with the staffs in the operating room. The required external motions were replaced by the bending mechanism within the abdomen using flexible laparoscope. The zooming of the robot is achieved through in and out motion at the port where the laparoscope is inserted. The robot is attachable to the bedside using a conventional laparoscope holder with multiple DOF joints and is compact enough for hand-carry. The voice-controlled command input and auto-tracking control is expected to enhance the overall performance of the system while reducing the control load imposed on the surgeon during a laparoscopic surgery. The proposed system is expected to have sufficient safety features and an easy-to-use interface to enhance the overall performance of current laparoscopy.

  • PDF

최소침습수술용 로봇의 안전성을 위한 제어 및 HMI 개발 (Development of Control and HMI for Safe Robot Assisted Minimally Invasive Surgery)

  • 정회주;송현종;박장우;박신석
    • 한국정밀공학회지
    • /
    • 제28권9호
    • /
    • pp.1048-1053
    • /
    • 2011
  • Recently, robots have been used in surgical area. Robotic surgery in Minimally Invasive Surgery gives many advantages to surgeons and patients both. This study introduce a robotic assistant to improve the safety of telerobotic Minimally Invasive Surgical procedures. The master-slave system is applied to the telerobotic surgical system with the master arm, which control the system, and slave robot which operates the surgery on the patient body. By using a 3-DOF master arm, the surgeon can control the 6-DOF surgical robot under the constraint of fulcrum point. This paper explains the telerobotic surgical system and confirms the system with the precision of the robot control related to the fulcrum point to enhance the safety.

Robot-Assisted Thoracic Surgery in Non-small Cell Lung Cancer

  • Lee, Jun Hee;Hong, Jeong In;Kim, Hyun Koo
    • Journal of Chest Surgery
    • /
    • 제54권4호
    • /
    • pp.266-278
    • /
    • 2021
  • Lobectomy is the standard treatment for early non-small cell lung cancer. Various surgical techniques for lobectomy have been developed, and minimally invasive thoracic surgery, such as video-assisted thoracic surgery or robot-assisted thoracic surgery, has been considered as an alternative to conventional open thoracotomy. The recently robotic lobectomy technique has developed since the first case series was published in 2002. Several studies have reported that robotic lobectomy has comparable oncologic and perioperative outcomes to those of video-assisted thoracic surgery lobectomy and open lobectomy. However, robotic lobectomy remains a challenge for surgeons because of the steep learning curve, reduced tactile sensation, difficulty in port placement, and challenges in cooperation between the surgeon and assistant. Many studies have reported on robotic lobectomy, but few have presented surgical techniques for robotic lobectomy. In this article, the surgical techniques and optimal performance of robotic lobectomy are described in detail for all 5 types of lobectomy for surgeons beginning with robotic lobectomy.

최소침습수술을 위한 복강경 매니퓰레이터 제어 (Laparoscope Manipulator Control for Minimally Invasive Surgery)

  • 김수현;김광기;조영호
    • 제어로봇시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.685-696
    • /
    • 2011
  • An efficient laparoscope manipulator robot was designed to automatically control the position of laparoscope via a passive joint on end-effector position. The end position of the manipulator is controlled to have corresponding velocity defined in the global coordinate space using laparoscopic visual information. Desired spatial position of laparoscope was derived from detected positions of surgical instrument tips, then the clinical viewing plane was moved by visual servoing task. The laparoscope manipulator is advantageous for automatically maintaining clinically important views in the laparoscopic image without any additional operator. A laparoscope is mounted to a holder which is linked to four degree of freedom manipulator via universal joint-type passive rings connection. No change in the design of laparoscope or manipulator is necessary for its application to surgery assistant robot system. Expanded working space and surgical efficiency were accomplished by implementing slant linking structure between laparoscope and manipulator. To ensure reliable positioning accuracy and controllability, the motion of laparoscope in an abdominal space through trocar was inspected using geometrical analysis. A designed laparoscope manipulating robot system can be easily set up and controlled in an operation room since it has a few subsidiary devices such as a laparoscope light source regulator, a control PC, and a power supply.

A Single-Center Experience of Robotic-Assisted Spine Surgery in Korea : Analysis of Screw Accuracy, Potential Risk Factor of Screw Malposition and Learning Curve

  • Bu Kwang Oh;Dong Wuk Son;Jun Seok Lee;Su Hun Lee;Young Ha Kim;Soon Ki Sung;Sang Weon Lee;Geun Sung Song;Seong Yi
    • Journal of Korean Neurosurgical Society
    • /
    • 제67권1호
    • /
    • pp.60-72
    • /
    • 2024
  • Objective : Recently, robotic-assisted spine surgery (RASS) has been considered a minimally invasive and relatively accurate method. In total, 495 robotic-assisted pedicle screw fixation (RAPSF) procedures were attempted on 100 patients during a 14-month period. The current study aimed to analyze the accuracy, potential risk factors, and learning curve of RAPSF. Methods : This retrospective study evaluated the position of RAPSF using the Gertzbein and Robbins scale (GRS). The accuracy was analyzed using the ratio of the clinically acceptable group (GRS grades A and B), the dissatisfying group (GRS grades C, D, and E), and the Surgical Evaluation Assistant program. The RAPSF was divided into the no-breached group (GRS grade A) and breached group (GRS grades B, C, D, and E), and the potential risk factors of RAPSF were evaluated. The learning curve was analyzed by changes in robot-used time per screw and the occurrence tendency of breached and failed screws according to case accumulation. Results : The clinically acceptable group in RAPSF was 98.12%. In the analysis using the Surgical Evaluation Assistant program, the tip offset was 2.37±1.89 mm, the tail offset was 3.09±1.90 mm, and the angular offset was 3.72°±2.72°. In the analysis of potential risk factors, the difference in screw fixation level (p=0.009) and segmental distance between the tracker and the instrumented level (p=0.001) between the no-breached and breached group were statistically significant, but not for the other factors. The mean difference between the no-breach and breach groups was statistically significant in terms of pedicle width (p<0.001) and tail offset (p=0.042). In the learning curve analysis, the occurrence of breached and failed screws and the robot-used time per screw screws showed a significant decreasing trend. Conclusion : In the current study, RAPSF was highly accurate and the specific potential risk factors were not identified. However, pedicle width was presumed to be related to breached screw. Meanwhile, the robot-used time per screw and the incidence of breached and failed screws decreased with the learning curve.

Intracorporeal Esophagojejunostomy during Reduced-port Totally Robotic Gastrectomy for Proximal Gastric Cancer: a Novel Application of the Single-Site® Plus 2-port System

  • Choi, Seohee;Son, Taeil;Song, Jeong Ho;Lee, Sejin;Cho, Minah;Kim, Yoo Min;Kim, Hyoung-Il;Hyung, Woo Jin
    • Journal of Gastric Cancer
    • /
    • 제21권2호
    • /
    • pp.132-141
    • /
    • 2021
  • Purpose: Intracorporeal esophagojejunostomy during reduced-port gastrectomy for proximal gastric cancer is a technically challenging technique. No study has yet reported a robotic technique for anastomosis. Therefore, to address this gap, we describe our reduced-port technique and the short-term outcomes of intracorporeal esophagojejunostomy. Materials and Methods: We conducted a retrospective review of patients who underwent a totally robotic reduced-port total or proximal gastrectomy between August 2016 and March 2020. We used an infra-umbilical Single-Site® port with two additional ports on both sides of the abdomen. To transect the esophagus, a 45-mm endolinear stapler was inserted via the right abdominal port. The common channel of the esophagojejunostomy was created between the apertures in the esophagus and proximal jejunum using a 45-mm linear stapler. The entry hole was closed with a 45-mm linear stapler or robot-sewn continuous suture. All anastomoses were performed without the aid of an assistant or placement of stay sutures. Results: Among the 40 patients, there were no conversions to open, laparoscopic, or conventional 5-port robotic surgery. The median operation time and blood loss were 254 min and 50 mL, respectively. The median number of retrieved lymph nodes was 40.5. The median time to first flatus, soft diet intake, and length of hospital stay were 3, 5, and 7 days, respectively. Three (7.5%) major complications, including two anastomosis-related complications and a case of small bowel obstruction, were treated with an endoscopic procedure and re-operation, respectively. No mortality occurred during the study period. Conclusions: Intracorporeal esophagojejunostomy during reduced-port gastrectomy can be safely performed and is feasible with acceptable surgical outcomes.