• Title/Summary/Keyword: Surgery

Search Result 33,947, Processing Time 0.056 seconds

Review of Photoacoustic Imaging for Imaging-Guided Spinal Surgery

  • Han, Seung Hee
    • Neurospine
    • /
    • v.15 no.4
    • /
    • pp.306-322
    • /
    • 2018
  • This review introduces the current technique of photoacoustic imaging as it is applied in imaging-guided surgery (IGS), which provides the surgeon with image visualization and analysis capabilities during surgery. Numerous imaging techniques have been developed to help surgeons perform complex operations more safely and quickly. Although surgeons typically use these kinds of images to visualize targets hidden by bone and other tissues, it is nonetheless more difficult to perform surgery with static reference images (e.g., computed tomography scans and magnetic resonance images) of internal structures. Photoacoustic imaging could enable real-time visualization of regions of interest during surgery. Several researchers have shown that photoacoustic imaging has potential for the noninvasive diagnosis of various types of tissues, including bone. Previous studies of the surgical application of photoacoustic imaging have focused on cancer surgery, but photoacoustic imaging has also recently attracted interest for spinal surgery, because it could be useful for avoiding pedicle breaches and for choosing an appropriate starting point before drilling or pedicle probe insertion. This review describes the current instruments and clinical applications of photoacoustic imaging. Its primary objective is to provide a comprehensive overview of photoacoustic IGS in spinal surgery.

Successful mitral repair in dogs by mitral annuloplasty using Hegar dilator: two case reports

  • Lee, Won-Jong;Kim, Junyoung;Moon, Chang-Hwan;Eom, TaeHeum;Son, DongJu;Lee, Seungmin;Lee, Haebeom;Jeong, Seong-Mok;Kim, Dae-Hyun
    • Journal of Veterinary Science
    • /
    • v.23 no.1
    • /
    • pp.11.1-11.10
    • /
    • 2022
  • Mitral regurgitation (MR) is the most common heart disease in small-breed dogs. Mitral repair, which comprise artificial chorda tendineae implantation and mitral annuloplasty, has become the mainstay of treatment in the veterinary field. We report on two small dogs who underwent mitral repair surgery for MR. A Hegar dilator was used during mitral annuloplasty for accurate and reproducible surgery. In both cases, mitral regurgitant flow almost disappeared after surgery, and clinical signs improved. The treatment regimen was terminated 3 months after the surgery. We concluded that using a Hegar dilator may facilitate mitral valve repair surgery.

ACCURACY OF DIGITAL MODEL SURGERY FOR ORTHOGNATHIC SURGERY: A PRECLINICAL EVALUATION (악교정 수술을 위한 디지털 모형 수술의 정확성 평가)

  • Kim, Bong-Chul;Park, Won-Se;Kang, Yon-Hee;Yi, Choong-Kook;Yoo, Hyung-Suk;Kang, Suk-Jin;Lee, Sang-Hwy
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.29 no.6
    • /
    • pp.520-526
    • /
    • 2007
  • The accuracy of model surgery is one of important factors which can influence the outcome of orthognathic surgery. To evaluate the accuracy of digitalized model surgery, we tried the model surgery on a software after transferring the mounted model block into a digital model, and compared the results with that of classical manual model surgery. We could get the following results, which can be used as good baseline analysis for the clinical application. 1. We made the 3D scanning of dental model blocks, and mounted on a software. And we performed the model surgery according to the previously arranged surgical plans, and let the rapid prototyping machine produce the surgical wafer. All through these process, we could confirm that the digital model surgery is feasible without difficulties. 2. The digital model surgery group (Group 2) showed a mean error of $0.0{\sim}0.1mm$ for moving the maxillary model block to the target position. And Group 1, which was done by manual model surgery, presented a mean error of $0.1{\sim}1.2mm$, which is definitely greater than those of Group 2. 3. Remounted maxillary model block with the wafers produced by digital model surgery from Group 2 showed the less mean error (0.2 to 0.4 mm) than that produced by manual model surgery in Group 1 (0.3 to 1.4 mm). From these results, we could confirm that the digital model surgery in Group 2 presented less error than manual model surgery of Group 1. And the model surgery by digital manipulation is expected to have less influence from the individual variation or degree of expertness. So the increased accuracy and enhanced manipulability will serve the digital model surgery as the good candidate for the improvement and replacement of the classical model surgery, if careful preparation works for the clinical adjustment is accompanied.