• Title/Summary/Keyword: Surge stress

Search Result 104, Processing Time 0.027 seconds

A Measurement of Switching Surge Voltage Using Inverter devices (인버터의 스위칭 서지전압 측정)

  • Kim, Jong-Gyeum;Jeong, Jong-Ho;Lee, Eun-Woong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.1
    • /
    • pp.14-21
    • /
    • 2004
  • Most adjustable-speed drives (ASDs) designed to operate low voltage induction motors incorporate voltage-source inverters (VSIs), which create motor voltages at high switching frequencies. The motor leads used to connect an ASD to a motor can behave like transmission lines for voltage pulses, which can be reflected at the motor terminals. The resulting oscillatory transient, known as the long-lead effect, can stress and consequently degrade the stator insulation system of a motor. This paper describes the results of tests to 1) determine the correlation between peak motor voltage and the length of motor leads and 2) determine the correlation between peak motor voltage and the switching frequency of the ASD Insulation failures like this usually are caused by voltage surges. Voltage surges are often the result of switching power circuits, lightning strikes, capacitor discharges and solid-state power devices.

A Study on Influences of Crack Morphology Variables (균열형상변수의 영향 고찰)

  • Park, Won-Bae;Lee, Young-Shin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.324-329
    • /
    • 2004
  • In this study, an application of crack morphology variables in the Leak-Before-Break(LBB) evaluation for nuclear piping systems is investigated, including influences on the leakage crack size and crack instability loads. The crack surface roughness and the number of flow turns as a function of the crack opening displacement are applied to LBB evaluations for KSNP pressurizer surge line, for which fatigue and stress corrosion cracking are considered as failure mechanisms. As a result, there would be a significant impact on safety margins to acceptance criteria for the surge line if crack morphology variables are applied additionally to the current regulatory guide without re-analyses for justification of safety factors being applied on the leakage crack size and piping loads for evaluations.

  • PDF

Electrical Stress Analysis of High Voltage motor Winding by Switching Surge (스위칭 서지에 의한 고압유도전동기의 권선의 전기적 스트레스 해석)

  • Kim, Jong-Kyeom;Lee, Eun-Woong;Kim, Il-Jung
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.990-992
    • /
    • 1993
  • Studies have been made to establish what coil design parameters have an important influence on the amplitude of interturn voltages developed in a machine winding subject to steep-fronted surges. The studies are based on a lattice-diagram model of multi conductor transmission line in a machine winding energised by a simple ramp function. Variations in interturn voltages produced by changes in insulation thickness, insulation permittivity, surge wave-front are examined and certain guidelines for avoiding high interturn voltages are evaluated.

  • PDF

The Simulation of VCB Switching Surge in the High Voltage Induction motors by EMTP (EMTP에 의한 고압 유도전동기의 진공차단기 스위칭서지 시뮬레이션)

  • Lee, Eun-Woong;Kim, Jong-Kyeom;Kim, Il-Jung;Kim, Taek-Soo;Lee, Sung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1001-1003
    • /
    • 1993
  • Steep-fronted surges associated with motor witching cause relatively large turn-to-turn winding stress. In order to calculate the surge level at the motor terminals, equivalent circuits consist of three parts with power sources, load cable and motor constants. This paper presents switching surges phenomena occurred in a high voltgae induction motor witching by EMTP.

  • PDF

Fault Prediction & Reliability Estimation of the Traction Motor by the Complex Accelerating Degradation and Condition Diagnosis (견인전동기의 복합가속열화 상태진단에 의한 고장예측 및 신뢰성 평가)

  • 왕종배;김명룡
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.763-766
    • /
    • 2000
  • In this paper, stator form-winding sample coils based on silicone resin and polyimide were made for fault prediction and reliability estimation on the 200 Class insulation system of traction motors. The complex accelerative degradation was performed by periods during 10 cycles, which was composed of thermal stress, fast rising surge voltage, vibration, water immersion and overvoltage applying. After aging of 10 cycles, condition diagnosis test such as insulation resistance & polarization index, capacitance & dielectric loss and partial discharge properties were investigated in the temperature range of 20∼160$^{\circ}C$. Relationship among condition diagnosis test was analyzed to find an dominative degradation factor and an insulation state at end-life point.

  • PDF

Typhoon Surge Simulation on the West Coast Incorporating Asymmetric Vortex and Wave Model on a Fine Finite Element Grid (상세유한요소격자에서 비대칭 경도풍과 파랑모형이 고려된 서해안의 태풍해일모의)

  • Suh, Seung-Won;Kim, Hyeon-Jeong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.3
    • /
    • pp.166-178
    • /
    • 2012
  • In order to simulate storm surge for the west coast, complex physics of asymmetrical typhoon wind vortex, tide and wave are simultaneously incorporated on a fine finite element mesh extended to the North Western Pacific sea. Asymmetrical vortex based on maximum wind radii for each quadrant by JTWC's best tracks are input in pADCIRC and wave stress is accounted by dynamic coupling with unSWAN. Computations performed on parallel clusters. In hindcasting simulation of typhoon Kompasu(1007), model results of wave characteristic are very close with the observed data at Ieo island, and sea surface records at major tidal stations are reproduced with satisfaction when typhoon is approaching to the coast. It is obvious that increasing of local storm surges can be found by introducing asymmetrical vortex. Thus this approach can be satisfactorily applied in coastal hazard management against to storm surge inundation on low level area and major harbor facilities.

Development and Verification of NEMO based Regional Storm Surge Forecasting System (NEMO 모델을 이용한 지역 폭풍해일예측시스템 개발 및 검증)

  • La, Nary;An, Byoung Woong;Kang, KiRyong;Chang, Pil-Hun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.373-383
    • /
    • 2020
  • In this study we established an operational storm-surge system for the northwestern pacific ocean, based on the NEMO (Nucleus for European Modeling of the Ocean). The system consists of the tide and the surge models. For more accurate storm surge prediction, it can be completed not only by applying more precise depth data, but also by optimal parameterization at the boundaries of the atmosphere and ocean. To this end, we conducted several sensitivity experiments related to the application of available bathymetry data, ocean bottom friction coefficient, and wind stress and air pressure on the ocean surface during August~September 2018 and the case of typhoon SOULIK. The results of comparison and verification are presented here, and they are compared with POM (Princeton Ocean Model) based Regional Tide Surge forecasting Model (RTSM). The results showed that the RTSM_NEMO model had a 29% and 20% decrease in Bias and RMSE respectively compared to the RTSM_POM model, and that the RTSM_NEMO model had a lower overall error than the RTSM_POM model for the case of typhoon SOULIK.

Assessment of Structural Safety of Buried Water Mains (매설관의 구조적 안전성 평가에 관한 연구)

  • Bae, Chul-Ho;Kim, Ju-Hwan;Kim, Jung-Hyun;Hong, Sung-Ho;Lee, Kyung-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.2
    • /
    • pp.151-164
    • /
    • 2007
  • Criteria for rehabilitation priority are discussed to evaluate structural stability of deteriorated water transport and transmission pipes, in this study. For the purposes, safety factor is introduced and estimated by measuring tensile strength and by analyzing stress caused by the internal-external loads working on buried pipe body. Related informations are surveyed and collected under various conditions in the fields by digging out and the structural stability is assessed. In the evaluation results of structural safety, it is shown that steel pipe is more affected by external load than internal load. The average external load is estimated as $53.7kg/cm^2$ and total hoop stress is estimated by $2676.5kg/cm^2$. Also, Poisson effect into longitudinal direction due to internal and external loads is most influential on hoop stress. The calculated safety factors of hoop stress are ranged from 0.7 to 5.2 with average value of 2.1, considering a bending stress to longitudinal direction. The decision of rehabilitation priority by safety factors show that structural safety of CIP sample 1(S1) was assessed at the lowest order with safety factor value, 0.7 and that of DI sample 15(S15) was evaluated as the most stable in structural aspect.

Tethers tension force effect in the response of a squared tension leg platform subjected to ocean waves

  • El-gamal, Amr R.;Essa, Ashraf;Ismail, Ayman
    • Ocean Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.327-342
    • /
    • 2014
  • The tension leg platform (TLP) is one of the compliant structures which are generally used for deep water oil exploration. With respect to the horizontal degrees of freedom, it behaves like a floating structure moored by vertical tethers which are pretension due to the excess buoyancy of the platform, whereas with respect to the vertical degrees of freedom, it is stiff and resembles a fixed structure and is not allowed to float freely. In the current study, a numerical study for square TLP using modified Morison equation was carried out in the time domain with water particle kinematics using Airy's linear wave theory to investigate the effect of changing the tether tension force on the stiffness matrix of TLP's, the dynamic behavior of TLP's; and on the fatigue stresses in the cables. The effect was investigated for different parameters of the hydrodynamic forces such as wave periods, and wave heights. The numerical study takes into consideration the effect of coupling between various degrees of freedom. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables. Nonlinear equation was solved using Newmark's beta integration method. Only uni-directional waves in the surge direction was considered in the analysis. It was found that for short wave periods (i.e., 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on tether tension force, wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations that is significantly dependent on wave height, and that special attention should be given to tethers fatigue because of their high tensile static and dynamic stress.

High Performance ESD/Surge Protection Capability of Bidirectional Flip Chip Transient Voltage Suppression Diodes

  • Pharkphoumy, Sakhone;Khurelbaatar, Zagarzusem;Janardhanam, Valliedu;Choi, Chel-Jong;Shim, Kyu-Hwan;Daoheung, Daoheung;Bouangeun, Bouangeun;Choi, Sang-Sik;Cho, Deok-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.4
    • /
    • pp.196-200
    • /
    • 2016
  • We have developed new electrostatic discharge (ESD) protection devices with, bidirectional flip chip transient voltage suppression. The devices differ in their epitaxial (epi) layers, which were grown by reduced pressure chemical vapor deposition (RPCVD). Their ESD properties were characterized using current-voltage (I-V), capacitance-voltage (C-V) measurement, and ESD analysis, including IEC61000-4-2, surge, and transmission line pulse (TLP) methods. Two BD-FCTVS diodes consisting of either a thick (12 μm) or thin (6 μm), n-Si epi layer showed the same reverse voltage of 8 V, very small reverse current level, and symmetric I-V and C-V curves. The damage found near the corner of the metal pads indicates that the size and shape of the radius governs their failure modes. The BD-FCTVS device made with a thin n- epi layer showed better performance than that made with a thick one in terms of enhancement of the features of ESD robustness, reliability, and protection capability. Therefore, this works confirms that the optimization of device parameters in conjunction with the doping concentration and thickness of epi layers be used to achieve high performance ESD properties.