• Title/Summary/Keyword: Surge motion

Search Result 95, Processing Time 0.018 seconds

Simulation of Interaction Forces between Two Ships Considering Ship's Dimension (선박의 크기를 고려한 두 선박의 간섭력에 관한 시뮬레이션)

  • Lee, Sang-Do
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.3
    • /
    • pp.47-54
    • /
    • 2017
  • This paper analyzed the motion characteristics of two ships according to the ship's dimension using Ship Handling Simulator. When the panamax container ship passes the smaller ship, peak point and patterns of interaction forces for the moored ship are noticeable. Accordingly, special attention should be paid to the movements of moored ship because surge force and yaw moment changes in the opposite direction before and after condition of ship's beam. However, when the container ship passes the larger moored ship in reverse, peak point stood out on the passing ship at the beginning of ship-to-ship interaction and attraction force on the passing ship occurred steadily during 1L(length overall of passing ship) interval at a point of beam. In addition, as the lateral distance between the hull of two ships decreases less than 2B(breadth of passing ship), interaction forces on the passing ship at the beginning are sharply increase.

Aerodynamic behaviour of double hinged articulated loading platforms

  • Zaheer, Mohd Moonis;Hasan, Syed Danish;Islam, Nazrul;Aslam, Moazzam
    • Ocean Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.17-42
    • /
    • 2021
  • Articulated loading platforms (ALPs) belongs to a class of offshore structures known as compliant. ALP motions have time periods falling in the wind excitation frequency range due to their compliant behaviour. This paper deals with the dynamic behavior of a double hinged ALP subjected to low-frequency wind forces with random waves. Nonlinear effects due to variable submergence, fluctuating buoyancy, variable added mass, and hydrodynamic forces are considered in the analysis. The random sea state is characterized by the Pierson-Moskowitz (P-M) spectrum. The wave forces on the submerged elements of the platform's shaft are calculated using Morison's Equation with Airy's linear wave theory ignoring diffraction effects. The fluctuating wind load has been estimated using Ochi and Shin wind velocity spectrum for offshore structures. The nonlinear dynamic equation of motion is solved in the time domain by the Wilson-θ method. The wind-structure interactions, along with the effect of various other parameters on the platform response, are investigated. The effect of offset of aerodynamic center (A.C.) with the center of gravity (C.G.) of platform superstructure has also been investigated. The outcome of the analyses indicates that low-frequency wind forces affect the response of ALP to a large extent, which otherwise is not enhanced in the presence of only waves. The mean wind modifies the mean position of the platform surge response to the positive side, causing an offset. Various power spectral densities (PSDs) under high and moderate sea states show that apart from the significant peak occurring at the two natural frequencies, other prominent peaks also appear at very low frequencies showing the influence of wind on the response.

Change in Turning Ability According to the Side Fin Angle of a Ship Based on a Mathematical Model

  • Lee, WangGook;Kim, Sang-Hyun;Jung, DooJin;Kwon, Sooyeon
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.91-100
    • /
    • 2022
  • In general, the effect of roll motion is not considered in the study on maneuverability in calm water. However, for high-speed twin-screw ships such as the DTMB 5415, the coupling effects of roll and other motions should be considered. Therefore, in this study, the estimation of maneuverability using a 4-degree-of-freedom (DOF; surge, sway, roll, yaw) maneuvering mathematical group (MMG) model was conducted for the DTMB 5415, to improve the estimation accuracy of its maneuverability. Furthermore, a study on the change in turning performance according to the fin angle was conducted. To accurately calculate the lift and drag forces generated by the fins, it is necessary to consider the three-dimensional shape of the wing, submerged depth, and effect of interference with the hull. First, a maneuvering simulation model was developed based on the 4-DOF MMG mathematical model, and the lift force and moment generated by the side fins were considered as external force terms. By employing the CFD model, the lift and drag forces generated from the side fins during ship operation were calculated, and the results were adopted as the external force terms of the 4-DOF MMG mathematical model. A 35° turning simulation was conducted by altering the ship's speed and the angle of the side fins. Accordingly, it was confirmed that the MMG simulation model constructed with the lift force of the fins calculated through CFD can sufficiently estimate maneuverability. It was confirmed that the heel angle changes according to the fin angle during steady turning, and the turning performance changes accordingly. In addition, it was verified that the turning performance could be improved by increasing the heel angle in the outward turning direction using the side fin, and that the sway speed of the ship during turning can affect the turning performance. Hence, it is considered necessary to study the effect of the sway speed on the turning performance of a ship during turning.

Quantitative Analysis of Quadrupole Noise Sources upon Quick Opening The Throttle (쓰로틀밸브 급개방시 기류소음의 4극음원에 대한 정량적 해석)

  • Kim Jaeheon;Cheong Cheolung;Kim SungTae;Lee Soogab
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.469-474
    • /
    • 2002
  • In recent years, modularization of engine parts has increased the application of plastic products in air intake systems. Plastic intake manifolds provide many advantages including reduced weight, contracted cost, and lower intake air temperatures. These manifolds, however, have some weakness when compared with customary aluminium intake manifolds, in that they have low sound transmission loss because of their lower material density. This low transmission loss of plastic intake manifolds causes several problems related to flow noise, especially when the throttle is opened quickly. The physical processes, responsible for this flow noise, include turbulent fluid motion and relative motion of the throttle to the airflow. The former is generated by high-speed airflow in the splits between the throttle valve and the inner-surface of the throttle body and surge-tank, which can be categorized into the quadrupole source. The latter induces the unsteady force on the flow, which can be classified into the dipole source. In this paper, the mechanism of noise generation from the turbulence is only investigated as a preliminary study. Stochastic noise source synthesis method is adopted for the analysis of turbulence-induced, i.e. quadrupole noise by throttle at quick opening state. The method consists of three procedures. The first step corresponds to the preliminary time-averaged Navier-Stokes computation with a $k-\varepsilon$ turbulence model providing mean flow field characteristics. The second step is the synthesis of time-dependent turbulent velocity field associated with quadrupole noise sources. The final step is devoted to the determination of acoustic source terms associated with turbulent velocity. For the first step, we used market available analysis tools such as STAR-CD, the trade names of fluid analysis tools available on the market. The steady state flows at three open angle of throttle valve, i.e. 20, 35 and 60 degree, are numerically analyzed. Then, time-dependent turbulent velocity fields are produced by using the stochastic model and the flow analysis results. Using this turbulent velocity field, the turbulence-originated noise sources, i.e. the self-noise and shear-noise sources are synthesized. Based on these numerical results, it is found that the origin of the turbulent flow and noise might be attributed to the process of formulation and the interaction of two vortex lines formed in the downstream of the throttle valve. These vortex lines are produced by the non-uniform splits between the throttle valve and inner cylinder surface. Based on the analysis, we present the low-noise design of the inner geometry of throttle body.

  • PDF

An Investigation of Higher Order Forces on a Vertical Truncated Cylinder

  • Boo, Sung-Youn
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.214-214
    • /
    • 2003
  • During a model test of Hutton TLP, a "ringing" response was first observed about 20 years ago. This phenomenon is a resonant build up over the time of wave period and this burst-like motion can cause the extreme load on the TLP tether. It is often detected in the large and steep irregular waves but the generation mechanism leading to the "ringing" is not yet well understood. According to the research since then, the higher order harmonic components may account for the "ringing" on the floating offshore structures. The main purpose of the present research is, thus, to measure the higher harmonic forces exerted on a vertical truncated circular column and to compare them with available data. A vertical truncated cylinder with a diameter of 3.5inch and a draft of 10.5inch is used as a test structure, which is a scaled model of ISSC TLP column. The cylinder is installed at a distance of 45ft from the wave maker in order to avoid parasitic waves created in the wave flap. Attached to the upper part of the cylinder are two force gages to measure the horizontal (surge) and vertical (heave) forces on the cylinder. The incoming waves are Stokes waves with a slope ranging from 0.06 to 0.24. The forces and waves are measured for 60 seconds with a sampling rate of 50 Hz. Among the recorded data, the first 10 waves are excluded because of transient behavior of the waves and the next The horizontal and vertical forces are analyzed up to 5th order harmonics. The horizontal forces are then compared to the values from the theoretical model called "FNV model". In addition, force transfer functions are also investigated. Major findings in this research are below. 1) The first order forces measured are slightly larger than the theoretical values of "FNV model" 2) The "FNV model" considerably overpredicts the second order forces. 3) The larger the amplitude and more extreme the wave slope, the smaller the predictions are compared to the experimental. 4) The higher harmonic forces are significantly smaller than the first harmonic force for all wave parameters. 5) The normalized forces vs. waves slopes are almost constant in the lower harmonics but vary a lot in the higher harmonics. 6) The trend of forces is more nonlinear in the horizontal forces than in the vertical forces as the wave slope increases. 7) The part of the results above is also observed by other researchers and confirmed again through the present work.

  • PDF