• 제목/요약/키워드: Surfactants

검색결과 1,045건 처리시간 0.029초

Effects of Non-ionic or Zwitterionic Surfactant on in vitro Digestibility of Rice Straw and Growth of Rumen Mixed Microorganisms. (비이온성 및 양쪽 이온성 계면활성제 첨가가 반추위 혼합 미생물의 성장과 볏짚의 in vitro 소화에 미치는 영향)

  • Lee, Shin-Ja;Kim, Wan-Young;Moon, Yea-Hwang;Kim, Hyeon-Shup;Kim, Kyoung-Hoon;Ha, Jong-Kyu;Lee, Sung-Sill
    • Journal of Life Science
    • /
    • 제18권4호
    • /
    • pp.515-521
    • /
    • 2008
  • This experiment was conducted to investigate effects of non-ionic or zwitterionic (+/-) surfactants on digestibility of rice straw, and changes of growth of rumen mixed microbes, pH, and gas production during in vitro fermentation. Also, during in vitro ruminal fermentation, microbial attachment on rice straw was investigated using scanning electron microscopy (SEM). Tween 80 or SOLFA-850 for non-ionic surfactant (NIS), and 3-(Dodecyldimethylammonio) propanesulfanate (DDAP) for zwitterionic surfactant (ZIS) was supplemented by 0.05% and 0.1% in Dehority's artificial medium containing Holtein rumen fluid, respectively, and the substrate for fermentation was rice straw passed through 1 mm screen. The experiment was composed of 7 treatments (two levels of two NISs, two levels of a ZIS) including the control, and 6, 12, 24, 48 and 72 hr of fermentation time with 3 replications per treatment. Treatment of Tween 80 increased in vitro DM digestibilities during 48 hr and 72 h post fermentations compared to the other treatments, whereas treatment of DDAP as a ZIS resulted in decreased DM digestibility than that of the control from 24 hr post fermentation (P<0.05). Gas production in vitro was greater (P<0.05) with addition of NIS than the control or ZIS, and increased as fermentation time elapsed. Rumen mixed microbial growth was greatest with addition of Tween 80 as NIS, and lowest when DDAP as ZIS was supplemented to the fermentation tube (P<0.05). In SEM observation, rumen microbial population attached on rice straw particle was greater with addition of NIS, but was less with addition ZIS compared with the control. In conclusion we could not found any positive effects of ZIS surfactants on rumunal fermentation characteristics and rumen microbial growth rates.

The Effect of the Surfactant on the Migration and Distribution of Immiscible Fluids in Pore Network (계면활성제가 공극 구조 내 비혼성 유체의 거동과 분포에 미치는 영향)

  • Park, Gyuryeong;Kim, Seon-Ok;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • 제54권1호
    • /
    • pp.105-115
    • /
    • 2021
  • The geological CO2 sequestration in underground geological formation such as deep saline aquifers and depleted hydrocarbon reservoirs is one of the most promising options for reducing the atmospheric CO2 emissions. The process in geological CO2 sequestration involves injection of supercritical CO2 (scCO2) into porous media saturated with pore water and initiates CO2 flooding with immiscible displacement. The CO2 migration and distribution, and, consequently, the displacement efficiency is governed by the interaction of fluids. Especially, the viscous force and capillary force are controlled by geological formation conditions and injection conditions. This study aimed to estimate the effects of surfactant on interfacial tension between the immiscible fluids, scCO2 and porewater, under high pressure and high temperature conditions by using a pair of proxy fluids under standard conditions through pendant drop method. It also aimed to observe migration and distribution patterns of the immiscible fluids and estimate the effects of surfactant concentrations on the displacement efficiency of scCO2. Micromodel experiments were conducted by applying n-hexane and deionized water as proxy fluids for scCO2 and porewater. In order to quantitatively analyze the immiscible displacement phenomena by n-hexane injection in pore network, the images of migration and distribution pattern of the two fluids are acquired through a imaging system. The experimental results revealed that the addition of surfactants sharply reduces the interfacial tension between hexane and deionized water at low concentrations and approaches a constant value as the concentration increases. Also it was found that, by directly affecting the flow path of the flooding fluid at the pore scale in the porous medium, the surfactant showed the identical effect on the displacement efficiency of n-hexane at equilibrium state. The experimental observation results could provide important fundamental information on immiscible displacement of fluids in porous media and suggest the potential to improve the displacement efficiency of scCO2 by using surfactants.

Study of the Sludge Formation Mechanism in Advanced Packaging Process and Prevention Method for the Sludge (어드밴스드 패키징 공정에서 발생할 수 있는 슬러지의 인자 확인 및 형성 방지법의 제안)

  • Jiwon Kim;Suk Jekal;Ha-Yeong Kim;Min Sang Kim;Dong Hyun Kim;Chan-Gyo Kim;Yeon-Ryong Chu;Neunghi Lee;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • 제31권1호
    • /
    • pp.35-45
    • /
    • 2023
  • In this study, the sludge formation in the wastewater drain from the advanced packaging process mechanisms are revealed as well as the key factors, materials, and sludge prevention methods using surfactant. Compared with that of conventional packaging process, advanced packaging process employ similar process to the semiconductor fabrication process, and thus many processes may generate wastewater. In specific, a large amount of wastewater may generate during the carrier wafer bonding, photo, development, and carrier wafer debonding processes. In order to identify the key factors for the formation of sludge during the advanced packaging process, six types of chemicals including bonding glue, HMDS, photoresist (PR), PR developer, debonding cleaner, and water are utilized and mixing evaluation is assessed. As a result, it is confirmed that the black solid sludge is formed, which is originated by the sludge seed formation by hydrolysis/dehydration reaction of HMDS and sludge growth via hydrophobic-hydrophobic binding with sludge seed and PR. For the sludge prevention investigation, three surfactants of CTAB, PEG, and shampoo are mixed with the key materials of sludge, and it is confirmed that the sludge formations are successfully suppressed. The underlying mechanism behind the sludge formation is that the carbon tails of the surfactant bind to PR with hydrophobic-hydrophobic interaction and inhibit the reaction with HMDS-based slurry seeds to prevent the sludge formation. In this regard, it is expected that various problems like clogging in drains and pipes during the advanced packaging process may effectively solve by the injection of surfactants into the drains.

Isolation of High Yielding Alkaline Protease Mutants of Vibrio metschnikovii Strain RH530 and Detergency Properties of Enzyme

  • Chung, So-Sun;Shin, Yong-Uk;Kim, Hee-Jin;Jin, Ghee-Hong;Rho, Hyune-Mo;Lee, Hyune-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권3호
    • /
    • pp.349-354
    • /
    • 2000
  • Abstract A facultative alkalophilic gram-negative Vibrio metschnikovii strain RH530, isolated from the wastewater, produced several alkaline proteases (VAP) including six alkaline serine proteases and a metalloprotease. From this strain, high yielding YAP mutants were isolated by NTG treatment. The isolated mutant KS1 showed nine times more activity than the wild-type after optimization of the culture media. The production was regulated by catabolite repression when glucose was added to the medium. The effects of several organic nitrogen sources on the production of the YAP were investigated to avoid catabolite repression. The combination of 4% wheat gluten meal (WGM), 1.5% cotton seed flour (eSF), and 5% soybean meal (SBM) resulted in the best production when supplemented with 1% NaCl. The YAP showed a resistance to surfactants such as $sodium-{\alpha}-olefin$ sulfonate (AOS), polyoxy ethylene oxide (POE), and sodium dodecyl sulfate (SDS), yet not to linear alkylbenzene sulfonate (LAS). However, the activity of the YAP was restored completely when incubated with LAS in the presence of POE or $Na_2SO_4$. The YAP was stable in a liquid laundry detergent containing 6.6% SLES (sodium lauryl ether sulfate), 6.6% LAS, 19.8% POE, and stabilizing agents for more than two weeks at $40^{\circ}C$, but the stability was sharply decreased even after 1 day when incubated at $60^{\circ}C$. A washing performance test with the YAP exhibited it to be a good washing power by showing 51 % and 60% activity at $25^{\circ}C{\;}and{\;}40^{\circ}C$, respectively, thereby indicating that the YAP also has a good detergency at a low temperature. All the results suggest that the YAP produced from the mutant strain KSI has suitable properties for use in laundry detergents.rgents.

  • PDF

Phenanthrene Uptake by Surfactant Sorbed on Activated Carbon (활성탄에 흡착된 계면활성제에 의한 Phenanthrene 흡착)

  • Ahn, Chi-Kyu;Woo, Seung-Han;Park, Jong-Moon
    • Journal of Soil and Groundwater Environment
    • /
    • 제13권2호
    • /
    • pp.1-11
    • /
    • 2008
  • Phenanthrene uptake by surfactant sorbed on activated carbon was investigated to recycle of surfactant in washed solution for contaminated soil. The partitioning of phenanthrene to the activated carbon coating with Triton X-100 as a surfactant was also evaluated by a mathematical model. Phenanthrene-contaminated soil (200 mg/kg) was washed in 10 g/L of surfactant solution. Washed phenanthrene in solution was separated by various particle loadings of granular activated carbon through a mode of selective adsorption. Removal of phenanthrene was 99.3%, and surfactant recovery was 88.9% by 2.5 g/L of granular activated carbon, respectively. Phenanthrene uptake by activated carbon was greater than that of phenanthrene calculated by a standard model for a system with one partitioning component. This is accounted for enhanced surface solubilization by hemi-micelles adsorbed onto granular activated carbon. The effectiveness factor is greater than 1 and molar ratio of solubilization to sorbed surfactant is higher than that of liquid surfactant. Results suggest that separation of contaminants and surfactants by activated carbon through washing process in soil is much effective than that of calculated in a theoretical model.

Characterization of Microemulsion of Crude Oil Using Alkali-Surfactant Solution (알칼리-계면활성제 용액을 이용한 인도네시아 A원유의 마이크로에멀전 특성)

  • Lee, Sang Heon;Kim, Sang Kyum;Bae, Wisup;Rhee, Young Woo
    • Applied Chemistry for Engineering
    • /
    • 제26권3호
    • /
    • pp.259-264
    • /
    • 2015
  • For the enhanced oil recovery, one of the most important factors is to determine the surfactant formulation in chemical flood. The objective of this study is to analyze the microemulsion formed between the alkali-surfactant (AS) solution and A crude oil for screening surfactants. The alkali-surfactant solution was manufactured by using the surfactant purchased from AK ChemTech. $C_{16}-PO_7-SO_4$ and sodium carbonate solution were used as surfactant and alkaline, respectively. Both TEGBE and IBA were used as a co-solvent. The AS solution and A crude oil can form a Type III middle phase microemulsion at the salinity from 0.0 wt%~3.6 wt%. Increasing the salinity causes the phase transition of microemulsion from the lower (Type I) to middle (Type III) to upper (Type II) phase. Interfacial tension (IFT) values calculated by Huh's equation were in good agreement with ultralow IFT. According to this characteristic, the surfactant purchased from a domestic company can be applied to the enhanced oil recovery.

Study of Behavior Characteristics of Impinging Spray of Emulsified Fuel (에멀젼연료 충돌분무의 거동특성에 관한 연구)

  • Yeom, Jeong Kuk;Kim, Hak Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제39권9호
    • /
    • pp.909-916
    • /
    • 2015
  • In this study, to investigate the effect of spray behavior characteristics, we induce the mixing ratio of emulsified fuel using impinging spray. We formulate the emulsified fuel by mixing diesel and hydrogen peroxide($H_2O_2$). We set the temperature of the heating plate to $150^{\circ}C$, $200^{\circ}C$, and $250^{\circ}C$, and set the injection pressures to 400, 600, 800, and 1000bar. The surfactants for the emulsified fuel mixture, which were mixed span80 and tween80 was mixed as 9:1, were fixed to 3% of the total volume of the emulsified fuel. We set the mixing ratio of $H_2O_2$ in the emulsified fuel as emulsified fuel(EF)0, EF2, EF12, and EF22. Further, we visualize the evaporation impinging spray using the Schlieren method. Based on the results of this study, we found that a higher temperature and injection pressure of the heating plate impingement led to the active diffusion of the fuel vapor, which promoted emulsified fuel evaporation. When the emulsified fuel is utilized in an actual engine, because of the temperature-drop effect of the combustion chamber, which is due to the evaporation of $H_2O_2$ in fuel and faster mixture formation is expected to decrease the engine emissions.

The Anti-Bacterial Activity of Supramolecule Containing Cosmetic Materials (초분자체 함유 화장제재의 항균 활성 효과)

  • Yoo, Dong-Chan;Cho, Hyun-Nam;Kim, Kyoung-Ran;Byun, Hae-Jung;Kim, Jung-Hyun;Park, Hye-Bin;Kim, Hee-Joon;Bang, Dae-Suk;Yang, Seun-Ah;Khang, Gong-Won;Jeong, Ho-Soon;Jhee, Kwang-Hwan
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • 제37권4호
    • /
    • pp.337-345
    • /
    • 2011
  • In this report, we have investigated the functional properties change of phytochemicals by the encapsulation using water soluble host, ${\beta}$-cyclodextrin. The cream, shampoo, bodywash, and hair tonic containing phytochemical supramolecules were produced by mixing the surfactants, fragrances and the oriental herbal extracts encapsulated with ${\beta}$-cyclodextrin. Shampoo and bodywash including the encapsulated phytochemicals exhibited anti-growth activity against Gram (+) and Malassezia furfur which is known to cause dandruff. In cytotoxicity test against HDF (human dermal fibroblast), we could not detect any toxicity when the supramolecules content was less than 1 mg/mL. Our results suggest that the supramolecule of ${\beta}$-cyclodextrin with phytochemicals could be a safe anti-bacterial agent for cosmeceuticals.

Removal of Oil from Soil Using Nonionic Surfactant : The Effects of Middle Phase Formation and Dynamic Interfacial Tension (비이온 계면활성제를 사용한 토양으로부터 오일의 제거에 관한 연구 : 중간상생성 및 동적 계면장력의 영향)

  • Lee, Kee-Suh;Kim, Young-Ho;Kim, Chul-Ung;Lee, Jung-Min;Koo, Kee-Kahb
    • Clean Technology
    • /
    • 제6권1호
    • /
    • pp.51-60
    • /
    • 2000
  • The soil remediation by non-ionic surfactant solutions ($C_{12}H_{25}O(CH_2CH_2O)_5H$ and Triton X-100) was studied. Depending on the amounts and use of co-surfactants, MPT(phase inversion temperature), dynamic interfacial tension, and the detergency efficiency of the surfactant solutions in soil were investigated. The oils used were kerosene, n-hexadecane, and paraffin oil. With respect to a higher detergency efficiency, a lower interfacial tension and the MPT was very important. The $C_{12}H_{25}O(CH_2CH_2O)_5H$ was better than Triton X-100 on the oil removal from the soil and the effect of oil kinds was kerosene>paraffin $oil{\geq}n-hexadecane$. The co-surfactant, n-dodecanol, reduced the MPT compared to no addition of this, whereas it did not enhance the detergent efficiency.

  • PDF

Preparation of Talc-Silica Composites by Controlling Surface Charge Behavior (표면전하 거동 조절을 이용한 탈크-실리카 복합체의 제조)

  • Yun, Ki-Hoon;Park, Min-Gyeong;Moon, Young-Jin;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • 제34권1호
    • /
    • pp.116-124
    • /
    • 2017
  • A plate-type inorganic pigment complex was manufactured in a manner that treats the surface of the complex by adjusting zeta potential between talc, an inorganic pigment used as a material for color cosmetics, and hydrophobic silica. Talc, which is usually used in the prescription of color cosmetics, is a plate-type, white-colored inorganic substance with good application and spreadability to skin. Furthermore, it features excellent dispersibility and extensibility as well as outstanding heat tolerance, light stability, and chemical resistance. In general, silica contributes to durable makeup and stabilized formulation. This paper covers a process of manufacturing an inorganic pigment complex, where hydrophobic silica was applied to the surface of talc by using differences in zeta potential after the surface charges of talc and hydrophobic silica had been adjusted with cationic and anionic surfactants, respectively. The resulting inorganic pigment complex was composed of talc whose surface is coated hydrophobic silica to the thickness of $1{\mu}m$ or less, which developed an effective hydrophobic property. Zeta potential was measured to analyze the surface charge of an inorganic pigment, and FT-IR, used to check the functional group of a surfactant, was applied to treat the surface of the pigment. The surface of the inorganic pigment complex was observed employing SEM, EDS, and FIB, while its structure was confirmed with XRD and FT-IR.