• Title/Summary/Keyword: Surfactant-enhanced Remediation

Search Result 48, Processing Time 0.026 seconds

Effect of Surfactant Concentration and pH on Surfactant-Enhanced Remediation in lowa Soil Contaminated by TCB (삼염화벤젠으로 오염된 아이오와토양의 복원시 계면활성제의 농도와 pH의 영향)

  • Dal-Heui Lee;Robert D. Cody
    • Economic and Environmental Geology
    • /
    • v.35 no.2
    • /
    • pp.149-154
    • /
    • 2002
  • Column tests were carried out to examine the effect of surfactant solution conditions on surfactant-enhanced remediation of contaminated soil. The selected conditions of the surfactant solution were concentration and pH. 1,2,4-trichlo-robenzene (TCB) was chosen as the model hydrophobic organic substances. Sodium diphenyl oxide disulfonate (DOSL) and octylphenoxypoly ethoxyethanol (OPEE) surfactants were selected for this study. Two Iowa soils, Fruitfield sand and Webster clay loam, were leached with surfactant solution. The test results revealed that an optimum condition was achieved for 4 %(v/v) of concentration and 10 of pH, respectively. The maximum recoveries of added TCB (93-98%) were obtained when optimal conditions of each surfactant solution parameter were simultaneously met. The optimum conditions of these parameters may be useful for surfactant-assisted remediation in soil contaminated by TCB.

Optimization of DOSL Surfactant Solution Conditions in Surfactant-Enhanced Remediation of Soil Contaminated by Toluene (톨루엔으로 오염된 토양에서 DOSL 계면활성제를 이용한 최적의 정화 조건 규명)

  • ;;Robert D. Cody
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.23-30
    • /
    • 2001
  • Column tests were carried out to examine the effect of surfactant solution conditions on the surfactant-enhanced remediation of soil columns contaminated by toluene. The conditioned parameters of the surfactant solution for the column tests were concentration, pH, temperature and flow rate. The test results revealed that an optimum condition was achieved for 4% (v/v) of concentration, 10 of pH, $20^{\circ}C$ of temperature and 4 mL/min of flow rate respectively. The removal of 95% of toluene was obtained when optimal conditions of each surfactant solution parameter were simultaneously met. This was a marked improvement and removal efficiency increased by 6-19% compared to that with unadjusted conditions. The optimum range of these parameters may be useful for a surfactant-based remediation in the aquifer contaminated by toluene.

  • PDF

Numerical Study on Operating Factors Affecting Performance of Surfactant-Enhanced Aquifer Remediation Process (계면활성제 증진 대수층 복원 프로세스에 영향을 미치는 운영 인자들에 대한 수치 연구)

  • Lee, Kun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.690-698
    • /
    • 2010
  • Contamination of groundwater resources by organic chemicals has become an issue of increasing environmental concern. Surfactant-enhanced aquifer remediation (SEAR) is widely recognized as one of the most promising techniques to remediate organic contaminations in-situ. Solutions of surfactant or surfactant with polymer are used to dramatically expedite the process, which in turn, may reduce the treatment time of a site compared to use of water alone. In the design of surfactant-based technologies for remediation of organic contaminated aquifers, it is very important to have a considerable analysis using extensive numerical simulations prior to full-scale implementation. This study investigated the formation and flow of microemulsions during SEAR of organic-contaminated aquifer using the finite difference model UTCHEM, a three-dimensional, multicomponent, multiphase, compositional model. The remediation process variables considered in this study were the sequence of injection fluids, the injection and extraction rate, the concentrations of polymer in surfactant slug and chase water, and the duration of surfactant injection. For each variable, temporal changes in injection and production wells and spatial distributions of relative saturations in the organic phase were compared. Cleanup time and cumulative organic recovery were also quantified. The study would provide useful information to design strategies for the remediation of nonaqueous phase liquid-contaminated aquifers.

계면활성제와 동전기 기술을 이용한 오염토양정화에서 APG사용의 타당성에 관한 연구

  • 양지원;이유진;박지연;김상준
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.243-246
    • /
    • 2002
  • Surfactant-enhanced electrokinetic remediation is an emerging technology that can effectively remove hydrocarbons from low-permeability soils. In this study, the electrokinetic remediation using APG(alkyl polyglucoside) was conducted for the removal of phenanthrene from kaolinite. APG, which was an environmentally compatible and non-toxic surfactant, was used at concentrations of 5, 15, and 30g/1 to enhance the solubility of phenanthrene. Also an electrolyte solution was used for considering a relation between electrical potential gradient and removal efficiency of phenanthrene. When the electrolyte solution was used, it represented low electrical potential gradient, but the removal efficiency was lower than that of no electrolyte system. Removal efficiency of phenanthrene in EK process using surfactant solution depended on concentration of surfactant. Because surfactant increased the solubility and the mobility of phenanthrene, when surfactant concentration was high, high removal efficiency was observed.

  • PDF

Effects of nonionic surfactants on the partitioning of naphthalene in soil/water system (토양과 수용액상에서 나프탈렌의 분배에 관한 비이온성 계면활성제의 영향)

  • 하동현;고석오;신원식;김영훈;전영웅;송동익
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.283-286
    • /
    • 2002
  • Solubilization and partitioning of naphthalene was investigated in an aqueous system containing soils and surfactants. The environmental behavior of polycyclic aromatic hydrocarbons(PAHs) was mainly governed by their solubility and partitioning properties on soil media in a subsurface system. In surfactant-enhanced remediation systems, surfactants might be an additional variable. a natural soil ,silica and kaolinite were tested as soil media. two nonionic surfactants, Triton X-100 and Hydropropy1-$\beta$-cyclodextrin (HPCD) were employed for naphthalene solubilization. Naphthalene showed linear on natural soil while non-linear sorption on silica and kaolinite. Soils have higher sorption capacity for Triton X-100 than HPCD indicating Triton X-100 formed ad-micelle on the soil surface. Desorption study showed a hysterysis and reversible desorption. The partitioning coefficient(K$_{D}$) of naphthalene was increased as the concentration of surfactant was increased. (below CMC), however, the coefficient was decreased above CMC. This indicates that naphthalene is partitioned into the micelles and the partition occurs competitively on both ad-micelle and free micelles as surfactant concentration increases. Therefore, the target compounds to be dissolved into aqueous phase in a surfactant enhanced remediation system might be highly partitioned on to the ad-micelle resulting in an adverse effect rather increased solubilization would be achieved.d.

  • PDF

Remediation of groundwater contaminated with MTBE using micellar solubilization

  • 백기태;조현정;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.151-154
    • /
    • 2001
  • To assess the remediation possibility of groundwater contaminated with MTBE, micellar solubilization by various surfactants was evaluated. Micellar solubilization is basic phenomena to apply micellar enhanced ultrafiltration for groundwater remediation contaminated with MTBE. Sodium dodecyl sulfate (SDS) shows the best removal efficiency among various nonionic, cationic and anionic surfactants. Molar ratio of SDS to MTBE was the most important factor for removal of MTBE using micellar solubilization. With the ratio of more than 13, the removal efficiency was saturated to 55%.

  • PDF

Remediation Technique for PCBs-and Phenols-Contaminated Soils by Surfactant-Enhanced Desorption (계면활성제 탈착촉진법을 이용한 폴리클로네이티드 바이페닐(PCBs)과 페놀류(Phenols)에 의하여 오염된 지반의 정화방안)

  • 박준범;윤현석;김준섭
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.241-257
    • /
    • 1999
  • Subsurface contamination of industrial hazardous organic substances is a serious social issue. Decomposing the hydrophobic organic compounds in the subsurface is technically difficult and the compounds can last as long-term contaminant sources of groundwater once they are sorbed on the soil. Although the danger of contaminated subsurface has long been recognized little was known about the effective remediation technique. Focusing on the remediation of the p-Cresol and 3, 5-Dichlorobiphenyl among subsurface contaminants, this paper studies the surfactant-enhanced desorption technique. Nonionic surfactant(Triton X-100) and anionic surfactant(SDS ) were used as desorbing solvents for extracting organic compound sorbed on soil particles. Sorption characteristics of soils and organic compounds were analyzed and the applications of surfactant solution were studied through batch tests and the flexible-wall permeameter tests. As a result of the sorption isotherm tests, a log-log linear relation was obtained between the linear-partition coefficient, $K_p$ and the octanol-water partition coefficient, $K_{ow}$ of each organic compound. The result of the batch test also showed that Triton X-100 at 0.5% of solution desorbs the 3, 5-Dichlorobiphenyl 28 times more than the water in the batch tests. The surfactant-enhanced subsurface remediation technique becomes more effective when the contaminants are hydrophobic and hard to be decomposed.

  • PDF

Solubilization isotherms of MTBE in various surfactant solutions for application of micellar-enhanced ultrafiltration (MEUF)

  • 양지원;백기태
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.103-106
    • /
    • 2002
  • Solubilization isotherms for methyl tort-butyl ether (MTBE) in sodium dodecyl sulfate(SDS), dowfax 8390, sodium dodecylbenzenesulfonate and cetylpyridinium chloride (CPC) were investigated for application to micellar enhanced remediation. Dowfax 8390 showed maximum extent of solubilization among surfactants tested in this study. It seems that sulfate group in anionic surfactants playes a important role in solublization of MTBE. Chemical shiftes in NMR of surfactant and MTBE supports this point.

  • PDF

Effect of Surfactant on Reductive Dechlorination of Trichloroethylene by Zero-Valent Iron (양이온-비이온 혼합계면활성제의 첨가가 영가철을 이용한 TCE환원에 미치는 영향)

  • Shin, Min-Chul;Choi, Hyun-Dock;Yang, Jung-Seok;Baek, Ki-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.6
    • /
    • pp.38-45
    • /
    • 2007
  • Trichloroethylene (TCE) is a representative dense non-aqueous phase liquid (DNAPL) and has contaminated substance environments including soil and groundwater due to leakage and careless. DNPAL, has been treated by surfactant-enhanced aquifer remediation (SEAR). After application of SEAR, groundwater contains still surfactant as well as little amount of residual TCE. Permeable reactive barrier using zero-valent iron (ZW) is a very effective technology to treat the residual TCE in groundwater. In this study, the effect of the residual surfactant on the reductive dechlorination of residual TCE was investigated using ZVI. Mixed surfactant composed of nonioinic surfactant and cationic surfactant was used as a residual surfactant because of toxicity and enhancement of dechlorination rate. Structure of surfactant affected significantly the decrhlorination rate of TCE. Mixed surfactant system with relatively short polyethylene oxide (PEO) chain in nonionic surfactant, cationic surfactant did not affect TCE dechlorination rate. However, mixed surfactant system with relatively long PEO chain in nonionic surfactant shows that TCE dechlorination rate was significantly dependent on fraction of cationic surfactant and HLB of nonionic surfactant. Cationic surfactant with trimethyl ammonium group enhanced reductive dechlorination rate compared to that surfactant with pyridinium group.

Effect of Electrolyte Concentration on Surfactant-Enhanced Electrokinetic Removal of Phenanthrene

  • 이유진;박지연;김상준;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.346-349
    • /
    • 2004
  • Surfactant-enhanced electrokinetic (EK) process was investigated to remove polycyclic aromatic hydrocarbons (PAHs) from low-permeable soils. Phenanthrene and kaolinite were selected as a representative PAH and a model soil, respectively. A nonionic surfactant Tergitol 15-S-12 was applied to improve the solubility of phenanthrene and sodium chloride was used as an electrolyte at the various concentrations from 0.001 to 0.1M. The addition of electrolyte affected both the removal efficiency and operation cost. When electrolyte was introduced, the electrical potential gradient became low and thus power consumption was reduced. However, as electrolyte concentration increased, the electroosmotic flow also decreased, so the removal efficiency of contaminant decreased. Therefore, the removal efficiency and power consumption should be considered simultaneously to determine the iptimum surfactant concentration, so a relatively lower concentration of electrolyte than certain value is desired.

  • PDF