• Title/Summary/Keyword: Surface-molecule interaction

Search Result 70, Processing Time 0.026 seconds

Functionalized Emulsion Styrene-Butadiene Rubber Containing Diethylaminoethyl Methacrylate for Silica Filled Compounds

  • Park, Jinwoo;Kim, Kihyun;Lim, Seok-Hwan;Hong, Youngkun;Paik, Hyun-jong;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.50 no.2
    • /
    • pp.110-118
    • /
    • 2015
  • In this study, diethylaminoethyl methacrylate-styrene-butadiene terpolymer (DEAEMA-SBR), in which diethylaminoethyl methacrylate (DEAEMA) was introduced to the SBR molecule as a third monomer, was synthesized by cold emulsion polymerization. It is expected that amine group introduced to a rubber molecule would improve dispersion of silica by the formation of hydrogen bond (or ionic coupling) between the amine group and silanol groups of silica surface. The chemical structure of DEAEMA-SBR was analyzed using proton nuclear magnetic resonance spectroscopy (H-NMR), Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). Then, various properties of DEAEMA-SBR/silica composite such as crosslink density, bound rubber content, abrasion resistance, and mechanical properties were evaluated. As a result, bound rubber content and crosslink density of DEAEMA-SBR/silica compound were higher than those of the SBR 1721 composite. Abrasion resistance and moduli at 300% elongation of the DEAEMA-SBR/silica composite were better than those of SBR 1721 composite due to the high bound rubber content and crosslink density. These results are attributed to high affinity between DEAEMA-SBR and silica. The proposed study suggests that DEAEMA-SBR can help to improve mechanical properties and abrasion resistance of the tire tread part.

Immunochemical study on the Role of ${\beta}_2$ Integrin in the Activation of Monocytes Upon Direct Contact with T Lymphocytes (T 세포 접촉에 의한 단핵구 활성화에서 ${\beta}_2$ Integrin의 역할에 관한 면역화학적 연구)

  • Lee, Suck-Cho;Lee, Ho;Oh, Kwi-Ok;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.2
    • /
    • pp.333-350
    • /
    • 1999
  • The modulation of leukocyte cell surface adhesion molecules may influence the development of cellular events that determine the course of the inflammatory process. Direct interaction between activated T cells and monocytes resulted in a large production of $IL-1{\beta}$ by monocytes. In this reactions, adhesion molecules play an important part, yet the role of them in Tmonocytes interaction remain unclear. This study was undertaken in an effort to elucidate, 1) the influence of 1.25(OH)$_2D_3-induced$ differentiation on the monocyte responsiveness to direct contact with T lymphocytes, and 2) the role of adhesion molecules on the T-monocyte direct interaction. Initially, I observed that direct contact of monocyte cell line THP-1 with stimulated fixed T cell line HuT78 markedly induces IL-1${\beta}$ production by THP-1. $IL-1{\beta}$ production was higher when THP-1 had been previously exposed to 1.25(OH)$_2D_3$ as compared to control, with ${\alpha}$- 1.25(OH)$_2D_3$ dose-dependent and exposure time-dependent manner. It was shown that 1.25(OH)$_2D_3$ also increased the expression of ${\beta}_2$ integrin adhesion receptor Mac-1(CD11b/CD18) dose- and timedependently, but did not increase the expression of human leukocyte antigen- D(HLA-D) and intercellular adhesion molecule-1(ICAM-1). The $IL-1{\beta}$ producing activity of THP-1 cells correlated well with the ability to induce the Mac-1 expression on THP-1 surface. Monoclonal antibody raised against relevant cell surface glycoproteins on THP-1 were tested for their ability to block the response of THP-1 to T cells. Antibody to Mac-1 only partially blocked $IL-1{\beta}$ production by THP-1, whereas antibodies to ICAM-1 and HLA-D did not. These data indicate that regulation of Mac-1 expression on THP-1 cells can alter the responsiveness of these cells to contact by activated T cells, however other unknown structures on the THP-1 cells may be involved in this process also.

  • PDF

Investigation of the Binding Force between Protein A and Immunoglobulin G Using Dielectrophoretic(DEP) Tweezers Inside a Microfluidic Chip (미세유체 칩 내에서 유전영동 집게(Dielectrophoretic Tweezers) 를 이용한 단백질A와 면역 글로불린 G의 결합에 관한 연구)

  • Kwak, Tae Joon;Lee, Jae Woo;Yoon, Dae Sung;Lee, Sang Woo
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.123-128
    • /
    • 2013
  • The 'Dielectrophoretic Tweezers(DEP Tweezers)' can be used as a facile, economical toolkit for quantitative measurement of chemical and biological binding forces related to many biological interactions within a microfluidic device. Our experimental setup can probe the interaction between a single receptor molecule and its specific ligand. Immunoglobulin G(IgG) functionalized on polystyrene microspheres has been used to detect individual surface linked Staphylococcus protein A(SpA) molecules and to characterize the strength of the noncovalent IgG-SpA bond. It was measured and compared with the existing measurements. Measured single binding force of between Goat, Rabbit IgG and SpA were $17{\pm}7pN$, $74{\pm}16pN$. This work can be used to investigate several different ligand-receptor interactions and antigen-antibody interactions.

Complexation of Co-contaminant Mixtures between Silver(I) and Polycyclic Aromatic Hydrocarbons

  • Yim, Soo-Bin
    • Journal of Environmental Science International
    • /
    • v.12 no.8
    • /
    • pp.871-879
    • /
    • 2003
  • The complexation of co-contaminant mixtures between Ag(I) and polycyclic aromatic hydrocarbon (PAH) molecules (naphthalene, pyrene, and perylene) were investigated to quantify the equilibrium constants of their complexes and elucidate the interactions between Ag(I) and PAH molecules. The apparent solubilities of PAHs in aqueous solutions increased with increasing Ag(I) ion concentration. The values, K$_1$ and K$_2$ of equilibrium constants of complexes of Ag(I)-PAHs, were 2.990 and 0.378, 3.615 and 1.261, and 4.034 and 1.255, for naphthalene, pyrene, and perylene, respectively, The K$_1$and K$_2$ values of PAHs for Ag(I) increased in the order of naphthalene < pyrene < perylene and naphthalene < pyrene ≒ perylene, respectively, indicating that a larger size of PAH molecule is likely to have more a richer concentration of electrons on the plane surfaces which can lead to stronger complexes with the Ag(I) ion. For the species of Ag(I)-PAH complexes, a 1:1 Ag(I) : the aromatic complex, AgAr$\^$+/, was found to be a predominant species over a 2:1 Ag(I) : aromatic complex, Ag$_2$Ar$\^$++/. The PAH molecules with four or more aromatic rings and/or bay regions were observed to have slightly less affinity with the Ag(I) ion than expected, which might result from inhibiting forces such as the spread of aromatic $\pi$ electrons over o wide molecular surface area and the intermolecular electronic repulsion in bay regions.

A Syudy on the Deposition Film Properties of Arachidic acid and Stearic acid (Arachidic acid와 Stearic acid의 누적막 특성에 관한 연구)

  • Choi, Young-Il;Kang, Young-Chul;Song, Jin-Won;Lee, Kyung-Sup;Oh, Jea-Han;Cho, Su-Young;Kim, Younq-Geun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1527-1529
    • /
    • 2001
  • The physicochemical properties of the LB films were by AFM. We give pressure stimulation into organic thin films and then manufacture a device under the accumulation condition that the state surface pressure is 2, 10, 30[mN/m]. The stable images are probably due to a s interaction between the monolayer film and substrate. We are unable to obtain molecule res in images of the films but did see a marked co between images of the bare substrate and those the network structure film deposited ont Formation that prevent when gas phase stat liquid phase state measure but Could know o matter that molecules form equal and stable when molecules were not distributed evenly, accumulated in solid state only.

  • PDF

Label-Free Real-Time Monitoring of Reactions Between Internalin A and Its Antibody by an Oblique-Incidence Reflectivity-Difference Method

  • Wang, Xu;Malovichko, Galina;Mendonça, Marcelo;Conceição, Fabricio Rochedo;Aleixo, José AG;Zhu, Xiangdong
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.165-168
    • /
    • 2016
  • Surface protein internalin (InlA) is a major virulence factor of the food-borne pathogen L. monocytogenes. It plays an important role in bacteria crossing the host's barrier by specific interaction with the cell adhesion molecule E-cadherin. Study of this protein will help to find better ways to prevent listeriosis. In this study, a monoclonal antibody against InlA was used to detect InlA. The reaction was label-free and monitored in real time with an oblique-incidence reflectivity-difference (OI-RD) technique. The kinetic constants kon and koff and the equilibrium dissociation constant Kd for this reaction were also obtained. These parameters indicate that the antibody is capable of detecting InlA. Additionally, the results also demonstrate the feasibility of using OI-RD for proteomics research and bacteria detection.

Cell-Specific Targeting of Texas Red with Anti-Ep-CAM Antibody

  • Lee, Soo-Chul;Tae, Gun-Sik
    • Journal of Photoscience
    • /
    • v.12 no.3
    • /
    • pp.123-127
    • /
    • 2005
  • The polyclonal antibody was generated against the peptide fragment of 62 amino acid residues (D 181-T242) near the COOH-terminal region of the extracellular domain of epithelial-cell adhesion molecule (Ep-CAM) and shown to be able to recognize Ep-CAM in competitive ELISA. Then, sulforhodamine 101 acid chloride (so called Texas red), a fluorescence dye, was conjugated to the affinity-purified anti-Ep-CAM antibody utilizing the reaction between the aliphatic amines of antibody and the sulfonyl chloride of Texas red. The molar ratio of Texas red to antibody was estimated to be approximately 1.86 by measuring optical densities at 280 nm and 596 nm, implying that the two molecules of Texas red at most were conjugated to antibody. The anti-Ep-CAM antibody-Texas red conjugate was then used for immunohistochemistry of CT-26 murine colon carcinoma cells. Based upon the fluorescence microscope images, anti-Ep-CAM antibody is able to deliver Texas red specifically to the surface of CT-26 cells on which Ep-CAM was actively expressed. This result indicates that anti-Ep-CAM antibody could be useful for the tissue-specific delivery of photosensitizers via antigen-antibody interaction.

  • PDF

State-selective Dissociation of Water Molecules on MgO Films Using LT-STM

  • Shin, Hyung-Joon;Jung, J.;Motobayashi, K.;Kim, Y.;Kawai, M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.112-112
    • /
    • 2011
  • The interaction of water molecules with solid surfaces has been a subject of considerable interests, due to its importance in the fields from atmospheric and environmental phenomena to biology, catalysis and electrochemistry [1,2]. Among various kinds of surfaces, a lot of theoretical and experimental studies have been performed regarding water on MgO(100), however, to date, there has been no direct observation of water molecules on MgO by scanning tunneling microscope (STM) as compared with those on metal surface. Here, we will present the direct observation and manipulation of single water molecules on ultrathin MgO(100) films using low-temperature scanning tunneling microscope (LT-STM) [3]. Our results rationalize the previous theoretical predictions of isolated water molecules on MgO including the optimum adsorption sites and non-dissociative adsorption of water. Moreover, we were able to dissociate a water molecule by exciting the vibrational mode of water, which is unattainable on metal surfaces. The enhanced residual time of tunneling electrons in molecules on the insulating film is responsible for this unique pathway toward dissociation of water.

  • PDF

Direction of Intercalation of a bis-Ru(II) Complex to DNA Probed by a Minor Groove Binding Molecule 4',6-Diamidino-2-phenylindole

  • Jang, Yoon Jung;Kim, Raeyeong;Chitrapriya, Nataraj;Han, Sung Wook;Kim, Seog K.;Bae, Inho
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2895-2899
    • /
    • 2013
  • Direction of intercalation to DNA of the planar dipyrido[3,2-a:2',3'-c]phenazine ligands (dppz) of a bis-Ru(II) complex namely, $[Ru(1,10-phenanthroline)_2dipyrido[3,2-a:2^{\prime},3^{\prime}-c]phenazine]^{2+}$ linkered by a 1,3-bis(4-pyridyl)propane, was investigated by probing the behavior of 4',6-diamidino-2-phenylindole (DAPI) that bound deep in the minor groove. Bis-intercalation of DPPZ resulted in a little blue shift and hyperchromism in DAPI absorption band, and a large decrease in DAPI fluorescence intensity which accompined by an increase in the dppz emission intensity. Diminishing the intenisty of the positive induced circular dichroism (CD) and linear dichroism (LD) were also observed. These spectral changes indicated that insertion of dppz ligand caused the change of the binding mode of DAPI, which probably moved to the exterior of DNA from the minor groove and interacted with the phospghate groups of DNA by electrostatic interaction. At the surface of DNA, DAPI binds at the phosphate groups of DNA by electrostatic attraction. Consequently, this observation indicated that the dppz ligand intercalated from the minor groove.

The Influence of Dielectric Constant on Ionic and Non-polar Interactions

  • Hwang, Kae-Jung;Nam, Ky-Youb;Kim, Jung-Sup;Cho, Kwang-Hwi;Kong, Seong-Gon;No, Kyoung-Tai
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.55-59
    • /
    • 2003
  • This work is focused on analyzing ion-pair interactions and showing the effect of solvent induced inter-atomic attractions in various dielectric environments. To estimate the stability of ion-pairs, SCI-PCM ab initio MO calculations were carried out. We show that the solvent-induced attraction or ‘cavitation' energy of the ion-pair interactions in solution that arises mainly from the stabilization of the water molecules by the generation of an electrostatic field. In fact, even the strong electrostatic interaction characteristic of ion-pair interactions in the gas phase cannot overcome the destabilization or reorganization of the water molecules around solute cavities that arise from cancellation of the electrostatic field. The solvent environment, possibly supplemented by some specific solvent molecules, may help place the solute molecule in a cavity whose surroundings are characterized by an infinite polarizable dielectric medium. This behavior suggests that hydrophobic residues at a protein surface could easily contact the side chains of other nearby residues through the solvent environment, instead of by direct intra-molecular interactions.