• Title/Summary/Keyword: Surface-enhanced infrared absorption

Search Result 13, Processing Time 0.109 seconds

INFRARED ABSORPTION MEASUREMENT DURING LOW-TEMPERATURE PECVD OF SILICON-OXIDE FILMS

  • Inoue, Yasushi;Sugimura, Hiroyuki;Takai, Osamu
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.297-302
    • /
    • 1999
  • In situ measurement of infrared absorption spectra has been performed during low-temperature plasma-enhanced chemical vapor depositiion of silicon-oxide films using tetramethoxysilane as a silicon source. Several absorption bands due to the reactant molecules are clearly observed before deposition. In the plasma, these bands completely disappear at any oxygen mixing ratio. This result shows that most of the tetramethoxysilane molecules are dissociated in the rf plasma, even C-H bonds. Existence of Si-H bonds in vapor phase and/or on the film surface during deposition has been found by infrared diagnostics. We observed both a decrease in Si-OH absorption and an increase in Si-O-Si after plasma off, which means the dehydration condensation reaction continues after deposition. The rate of this reaction is much slower than the deposition ratio of the films.

  • PDF

Plasmon-enhanced Infrared Spectroscopy Based on Metasurface Absorber with Vertical Nanogap

  • Hwang, Inyong;Lee, Jongwon;Jung, Joo-Yun
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.275-279
    • /
    • 2018
  • In this study, we introduce a sensing platform based on a plasmonic metasurface absorber (MA) with a vertical nanogap for the ultrasensitive detection of monolayer molecules. The vertical nanogap of the MA, where the extremely high near-field is uniformly distributed and exposed to the external environment, is formed by an under-cut structure between a metallic cross nanoantenna and the mirror layer. The accessible sensing area and the enhanced near-field of the MA further enhance the sensitivity of surface-enhanced infrared absorption for the target molecule of 1-octadecanethiol. To provide strong coupling between the molecular vibrations and plasmonic resonance, the design parameters of the MA with a vertical nanogap are numerically designed.

Analysis of Subwavelength Metal Hole Array Structure for the Enhancement of Quantum Dot Infrared Photodetectors

  • Ha, Jae-Du;Hwang, Jeong-U;Gang, Sang-U;No, Sam-Gyu;Lee, Sang-Jun;Kim, Jong-Su;Krishna, Sanjay;Urbas, Augustine;Ku, Zahyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.334-334
    • /
    • 2013
  • In the past decade, the infrared detectors based on intersubband transition in quantum dots (QDs) have attracted much attention due to lower dark currents and increased lifetimes, which are in turn due a three-dimensional confinement and a reduction of scattering, respectively. In parallel, focal plane array development for infrared imaging has proceeded from the first to third generations (linear arrays, 2D arrays for staring systems, and large format with enhanced capabilities, respectively). For a step further towards the next generation of FPAs, it is envisioned that a two-dimensional metal hole array (2D-MHA) structures will improve the FPA structure by enhancing the coupling to photodetectors via local field engineering, and will enable wavelength filtering. In regard to the improved performance at certain wavelengths, it is worth pointing out the structural difference between previous 2D-MHA integrated front-illuminated single pixel devices and back-illuminated devices. Apart from the pixel linear dimension, it is a distinct difference that there is a metal cladding (composed of a number of metals for ohmic contact and the read-out integrated circuit hybridization) in the FPA between the heavily doped gallium arsenide used as the contact layer and the ROIC; on the contrary, the front-illuminated single pixel device consists of two heavily doped contact layers separated by the QD-absorber on a semi-infinite GaAs substrate. This paper is focused on analyzing the impact of a two dimensional metal hole array structure integrated to the back-illuminated quantum dots-in-a-well (DWELL) infrared photodetectors. The metal hole array consisting of subwavelength-circular holes penetrating gold layer (2DAu-CHA) provides the enhanced responsivity of DWELL infrared photodetector at certain wavelengths. The performance of 2D-Au-CHA is investigated by calculating the absorption of active layer in the DWELL structure using a finite integration technique. Simulation results show the enhanced electric fields (thereby increasing the absorption in the active layer) resulting from a surface plasmon, a guided mode, and Fabry-Perot resonances. Simulation method accomplished in this paper provides a generalized approach to optimize the design of any type of couplers integrated to infrared photodetectors.

  • PDF

Stability of hydrophobic properties of plasma polymerized tetrakis(trimethylsilyloxy)silane film surface

  • Jang, Jinsub;Woo, Sungmin;Ban, Wonjin;Nam, Jaehyun;Lee, Yeji;Choi, Woo Seok;Jung, Donggeun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.147.1-147.1
    • /
    • 2016
  • Hydrophobic thin films are variously applicable for encapsulation of organic devices and water repulsive glass, etc. In this work, the stability of hydrophobic characteristics of plasma polymerized tetrakis (trimethylsilyloxy) silane (ppTTMSS) thin films were investigated. The films were deposited with plasma enhanced chemical vapor deposition (PECVD) on the glass. The deposition plasma power and deposition pressure was 70 W and 600 mTorr, respectively. Thereafter, deposited films were treated by 248nm KrF excimer laser. Stability of hydrophobic properties of plasma polymerized tetrakis(trimethylsilyloxy)silane film surface was tested by excimer laser irradiation, which is thought to simulate severe outdoor conditions. Excimer laser irradiation cycles changed from 10 to 200 cycles. The chemical structure and hydrophobicity of ppTTMSS films were analyzed by using Fourier transform infrared (FTIR) spectroscopy and water contact angle (WCA) measurement, respectively. Absorption spectra peaks and WCA of excimer laser treated ppTTMSS films did not change notably. These results show that our ppTTMSS films possess stable hydrophobic properties.

  • PDF

The Detection of Yellow Sand Dust Using the Infrared Hybrid Algorithm

  • Kim, Jae-Hwan;Ha, Jong-Sung;Lee, Hyun-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.370-373
    • /
    • 2005
  • We have developed Hybrid algorithm for yellow sand detection. Hybrid algorithm is composed of three methods using infrared bands. The first method used the differential absorption in brightness temperature difference between $11\mu m\;and\;12\mu m$ (BID _1), through which help distinguish the yellow sand from various meteorological clouds. The second method uses the brightness temperature difference between $3.7\mu m\;and\;11\mu m$ (BID_2). The technique would be most sensitive to dust loading during the day when the BID _2 is enhanced by reflection of $3.7\mu m$ solar radiation. The third one is a newly developed algorithm from our research, the so-called surface temperature variation method (STY). We have applied the three methods to MODIS for derivation of the yellow sand dust and in conjunction with the Principle Component Analysis (PCA), a form of eigenvector statistical analysis. PCI shows better results for yellow sand detection in comparison with the results from individual method. The comparison between PCI and MODIS aerosols optical depth (AOD) shows remarkable good correlations during daytime and relatively good correlations over the land.

  • PDF

Fast Defect Detection of PCB using Ultrasound Thermography (초음파 서모그라피를 이용한 빠른 PCB 결함 검출)

  • Cho, Jai-Wan;Jung, Hyun-Kyu;Seo, Yong-Chil;Jung, Seung-Ho;Kim, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.273-275
    • /
    • 2005
  • Active thermography is being used since several years for remote non-destructive testing. It provides thermal images for remote detection and imaging of damages. Also, it is based on propagation and reflection of thermal waves which are launched from the surface into the inspected component by absorption of modulated radiation. For energy deposition, it use external heat sources (e.g., halogen lamp or convective heating) or internal heat generation (e.g., microwaves, eddy current, or elastic wave). Among the external heat sources, the ultrasound is generally used for energy deposition because of defect selective heating up. The heat source generating a thermal wave is provided by the defect itself due to the attenuation of amplitude modulated ultrasound. A defect causes locally enhanced losses and consequently selective heating up. Therefore amplitude modulation of the injected ultrasonic wave turns a defect into a thermal wave transmitter whose signal is detected at the surface by thermal infrared camera. This way ultrasound thermography(UT) allows for selective defect detection which enhances the probability of defect detection in the presence of complicated intact structures. In this paper the applicability of UT for fast defect detection is described. Examples are presented showing the detection of defects in PCB material. Measurements were performed on various kinds of typical defects in PCB materials (both Cu metal and non-metal epoxy). The obtained thermal image reveals area of defect in row of thick epoxy material and PCB.

  • PDF

Extraordinary Optical Transmission and Enhanced Magneto-optical Faraday Effect in the Cascaded Double-fishnet Structure with Periodic Rectangular Apertures

  • Lei, Chengxin;Man, Zhongsheng;Tang, Shaolong
    • Current Optics and Photonics
    • /
    • v.4 no.2
    • /
    • pp.134-140
    • /
    • 2020
  • A significant enhancement of the magneto-optical Faraday rotation and extraordinary optical transmission (EOT) in the cascaded double-fishnet (CDF) structure with periodic rectangular apertures is theoretically predicted by using the extended finite difference time domain (FDTD) method. The results demonstrate that the transmittance spectrum of the CDF structure has two EOT resonant peaks in a broad spectrum spanning visible to near-infrared wavebands, one of them coinciding with the enhanced Faraday rotation and large figure of merit (FOM) at the same wavelength. It is most important that the resonant position and intensity of the transmittance, Faraday rotation and FOM can be simply tailored by adjusting the incident wavelength, the thickness of the magnetic layer, and the offset between two metallic rectangular apertures, etc. Furthermore, the intrinsic physical mechanism of the resonance characteristics of the transmittance and Faraday rotation is thoroughly studied by investigating the electromagnetic field distributions at the location of resonance. It is shown that the transmittance resonance is mainly determined by different hybrid modes of surface plasmons (SPs) and plasmonic electromagnetically induced transparency (EIT) behavior, and the enhancement of Faraday rotation is mostly governed by the plasmonic electromagnetically induced absorption (EIA) behavior and the conversion of the transverse magnetic (TM) mode and transverse electric (TE) mode in the magnetic dielectric layer.

DEPOSITION OF c-BN FILMS BY PULSED DC BIASING IN MAGNETICALLY ENHANCED ARE METHOD

  • Lee, S.H.;Byon, E.S.;Lee, K.H.;J., Tian;Yoon, J.H.;Sung, C.;Lee, S.R.
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.467-471
    • /
    • 1999
  • BN films were grown on silicon (l00) substrate by magnetically enhanced activated reactive evaporation (ME-ARE) with pulsed DC power instead of r.f. for substrate biasing. The deposited films were analyzed using Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). FTIR results show that the intensity of absorption band of $sp^2$ bond of BN decreased and that of $sp^3$ bond of c-BN increased with increasing pulsed DC bias voltage applied to substrate. The initially grown layer at the interface was observed by TEM and considered to be of$ sp^2$-bonded BN. The cross-sectional and planar TEM micrographs show that the upper layer on the initial layer was the single phase c-BN. It is concluded that cubic boron nitride films could be synthesized by ME-ARE process with pulsed DC biasing.

  • PDF

Preparation and Characterization of Silica-coated Gold Nanoflowers (AuNFs) with Raman Dye Encoding

  • Yoo, Jihye;Lee, Sang-Wha
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2765-2768
    • /
    • 2014
  • Flower-like Au nanoparticles, so-called Au nanoflowers (AuNFs), were synthesized by simply adding ascorbic acid to a gold acid solution in the presence of a chitosan biopolymer. The chitosan-entangled AuNFs exhibited strong plasmon absorption in the near-infrared (NIR) wavelength due to the aggregation of primary Au nanoparticles. The chitosan-entangled AuNFs were preferentially adsorbed by Raman-active 2-chlorothiophenol (CTP) molecules, and the CTP-encoded AuNFs (AuNF-CTPs) were subsequently coated with a thin silica layer by a sol-gel reaction with Si alkoxides. The silica-coated AuNFs (AuNF-CTPs@silica) exhibited the distinct Raman signals of adsorbed CTP molecules, as a potential nanoprobe with surface-enhanced Raman scattering (SERS).

Fast Defect Detection of PCB using Ultrasound Thermography (초음파 서모그라피를 이용한 빠른 PCB 결함 검출)

  • Cho Jai-Wan;Seo Yong-Chil;Jung Seung-Ho;Kim Seungho;Jung Hyun-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.2
    • /
    • pp.68-71
    • /
    • 2006
  • Active thermography has been used for several years in the field of remote non-destructive testing. It provides thermal images for remote detection and imaging of damages. Also, it is based on propagation and reflection of thermal waves which are launched from the surface into the inspected component by absorption of modulated radiation. For energy deposition, it use external heat sources (e.g., halogen lamp or convective heating) or internal heat generation (e.g., microwaves, eddy current, or elastic wave). Among the external heat sources, the ultrasound is generally used for energy deposition because of defect selective heating up. The heat source generating a thermal wave is provided by the defect itself due to the attenuation of amplitude modulated ultrasound. A defect causes locally enhanced losses and consequently selective heating up. Therefore amplitude modulation of the injected ultrasonic wave turns a defect into a thermal wave transmitter whose signal is detected at the surface by thermal infrared camera. This way ultrasound thermography(UT) allows for selective defect detection which enhances the probability of defect detection in the presence of complicated intact structures. In this paper the applicability of UT for fast defect detection is described. Examples are presented showing the detection of defects in PCB material. Measurements are performed on various kinds of typical defects in PCB materials (both Cu metal and non-metal epoxy). The obtained thermal image reveals area of defect in row of thick epoxy material and PCB.