• Title/Summary/Keyword: Surface zeta potential

Search Result 260, Processing Time 0.024 seconds

Post Ru CMP Cleaning for Alumina Particle Removal

  • Prasad, Y. Nagendra;Kwon, Tae-Young;Kim, In-Kwon;Park, Jin-Goo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.34.2-34.2
    • /
    • 2011
  • The demand for Ru has been increasing in the electronic, chemical and semiconductor industry. Chemical mechanical planarization (CMP) is one of the fabrication processes for electrode formation and barrier layer removal. The abrasive particles can be easily contaminated on the top surface during the CMP process. This can induce adverse effects on subsequent patterning and film deposition processes. In this study, a post Ru CMP cleaning solution was formulated by using sodium periodate as an etchant and citric acid to modify the zeta potential of alumina particles and Ru surfaces. Ru film (150 nm thickness) was deposited on tetraethylorthosilicate (TEOS) films by the atomic layer deposition method. Ru wafers were cut into $2.0{\times}2.0$ cm pieces for the surface analysis and used for estimating PRE. A laser zeta potential analyzer (LEZA-600, Otsuka Electronics Co., Japan) was used to obtain the zeta potentials of alumina particles and the Ru surface. A contact angle analyzer (Phoenix 300, SEO, Korea) was used to measure the contact angle of the Ru surface. The adhesion force between an alumina particle and Ru wafer surface was measured by an atomic force microscope (AFM, XE-100, Park Systems, Korea). In a solution with citric acid, the zeta potential of the alumina surface was changed to a negative value due to the adsorption of negative citrate ions. However, the hydrous Ru oxide, which has positive surface charge, could be formed on Ru surface in citric acid solution at pH 6 and 8. At pH 6 and 8, relatively low particle removal efficiency was observed in citric acid solution due to the attractive force between the Ru surface and particles. At pH 10, the lowest adhesion force and highest cleaning efficiency were measured due to the repulsive force between the contaminated alumina particle and the Ru surface. The highest PRE was achieved in citric acid solution with NaIO4 below 0.01 M at pH 10.

  • PDF

Effect of Lecithin on Dermal Safety of Nanoemulsion Prepared from Hydrogenated Lecithin and Silicone Oil

  • Bae, Duck-Hwan;Shin, Jae-Sup;Shin, Gwi-Su;Jin, Fan-Long;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.821-824
    • /
    • 2009
  • In this study, a hydrogenated lecithin-containing nanoemulsion was prepared from hydrogenated lecithin and silicone oil. Tween-60 and liquid paraffin, widely known emulsifiers, were used as standard substances, and high shear was produced by utilizing a high shear homogenizer and microfluidizer. The properties of the nanoemulsion prepared with hydrogenated lecithin were evaluated by measuring interfacial tension, dynamic interfacial tension, droplet size, zeta-potential, friction force, skin surface hygrometery, and dermal safety. The interfacial tension of lecinol S10/silicone oil was lower than that of lecinol S10/liquid paraffin. The nanoemulsion prepared from hydrogenated lecithin shows lower zeta-potential, skin surface hygrometery, and friction force compared with a general emulsion. The silicone nanoemulsion prepared from hydrogenated lecithin showed a zero value in the patch test and thus exhibits high dermal safety.

Dispersion stability of ultra-fine $BaTiO_3$ suspensions in aqueous medium

  • Chun, M.P.;Chung, Y.B.;Ma, Y.J.;Cho, J.H.;Kim, B.I.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.6
    • /
    • pp.239-243
    • /
    • 2005
  • The effect of pH and particle size on the dispersion stability of ultra-fine $BaTiO_3$ suspensions in aqueous medium have been investigated by means of zeta potential, sediment experiments, and powder properties (particle analysis, specific surface area) etc. Zeta potential as a function of pH for two particles of different size increases from -75 to +10 mV with decreasing pH from 8.5 to 1.4. The curve of zeta potential for small particle (150 nm) has slow slope than that of large particle (900nm), giving IEP (isoelectric point) value of pH=1.6 for small particle and pH=1.9 for large particle respectively, which means that it is more difficult to control zeta potential with pH fur small particle than large particle. The dispersion stability of $BaTiO_3$ particles in aqueous medium was found to be strongly related with the agglomeration of colloidal suspensions with time through the sedimentation behaviors of colloidal particles with time and pH value.

Cellular Uptake and Cytotoxicity of β-Lactoglobulin Nanoparticles: The Effects of Particle Size and Surface Charge

  • Ha, Ho-Kyung;Kim, Jin Wook;Lee, Mee-Ryung;Jun, Woojin;Lee, Won-Jae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.3
    • /
    • pp.420-427
    • /
    • 2015
  • It is necessary to understand the cellular uptake and cytotoxicity of food-grade delivery systems, such as ${\beta}$-lactoglobulin (${\beta}$-lg) nanoparticles, for the application of bioactive compounds to functional foods. The objectives of this study were to investigate the relationships between the physicochemical properties of ${\beta}$-lg nanoparticles, such as particle size and zeta-potential value, and their cellular uptakes and cytotoxicity in Caco-2 cells. Physicochemical properties of ${\beta}$-lg nanoparticles were evaluated using particle size analyzer. Flow cytometry and confocal laser scanning microscopy were used to investigate cellular uptake and cytotoxicity of ${\beta}$-lg nanoparticles. The ${\beta}$-lg nanoparticles with various particle sizes (98 to 192 nm) and zeta-potential values (-14.8 to -17.6 mV) were successfully formed. A decrease in heating temperature from $70^{\circ}C$ to $60^{\circ}C$ resulted in a decrease in the particle size and an increase in the zeta-potential value of ${\beta}$-lg nanoparticles. Non-cytotoxicity was observed in Caco-2 cells treated with ${\beta}$-lg nanoparticles. There was an increase in cellular uptake of ${\beta}$-lg nanoparticles with a decrease in particle size and an increase in zeta-potential value. Cellular uptake ${\beta}$-lg nanoparticles was negatively correlated with particle size and positively correlated with zeta-potential value. Therefore, these results suggest that the particle size and zeta-potential value of ${\beta}$-lg nanoparticles play an important role in the cellular uptake. The ${\beta}$-lg nanoparticles can be used as a delivery system in foods due to its high cellular uptake and non-cytotoxicity.

Roles of Fucoidan, an Anionic Sulfated Polysaccharide on BSA-Stabilized Oil-in-Water Emulsion

  • Kim, Do-Yeong;Shin, Weon-Sun
    • Macromolecular Research
    • /
    • v.17 no.2
    • /
    • pp.128-132
    • /
    • 2009
  • Fucoidan, a sulfated polysaccharide derived from brown seaweed, is an important material valued for its various biological functions, including anti-coagulation, anti-aging, and immune system support. In this study, we examined the potential of fucoidan as a novel emulsifying agent in BSA (bovine serum albumin)-stabilized emulsion at a neutral pH. We measured the dispersed oil-droplet size, surface zeta-potential and creaming formation of 0.5 wt% BSA emulsion (20 wt% oil traction) in the absence and presence of fucoidan. The average particle size and zeta-potential value were 625.4 nm and -30.91 mV in only BSA-stabilized emulsion and 745.2 nm and -44.2 mV in 1.0 wt% fucoidan-added BSA emulsion, respectively. This result suggested that some positive charges of the BSA molecules interacted with the negative charges of fucoidan to inhibit the flocculation among the oil droplets. The creaming rate calculated from the backscattering data measured by Turbiscan dramatically decreased in 1.0 wt% fucoidan-added BSA emulsion during storage. Accordingly, the repulsion forces induced among the oil particles coated with 1.0 wt% fucoidan in emulsion solution resulted in significantly increased emulsion stability. The turbidity of the BSA-stabilized emulsion at 500 nm decreased during five days of storage. However, the fucoidan-added BSA emulsion exhibited a higher value of turbidity than the BSA-stabilized emulsion did. In conclusion, an anionic sulfated fucoidan lowered the surface zeta-potential of BSA-coated oil droplets via the electrostatic interaction, and subsequently inhibited the flocculation among the oil droplets, thereby clearly minimizing the creaming and phase separation of the emulsion.

Emulsification of Chloroprene Rubber (CR) by Interfacial Chemistry; Stabilization and Enhancement of Mechanical Properties

  • Lee, Eun-Kyoung
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.257-265
    • /
    • 2017
  • In this work, CR (Chloroprene Rubber) was emulsified by phase-inversion emulsification with nonionic surfactants (NP-1025, LE-1017, and OP-1019) and an anionic surfactant (SDBS; sodium dodecylbenzenesulfonate), and its stabilization was investigated through a study of its adsorption characteristics, zeta potential, and flow behavior. As the amount of the mixed surfactant increased, the droplet size decreased, resulting in the increase of viscosity. In particular, a CR emulsion with a lower absorbance in the UV spectrum exhibited the highest zeta potential. The results of this experiment showed that the CR emulsion prepared using (LE-1017) and SDBS was the most stable. In this study, calcium hydroxide and aluminum hydroxide were added to enhance the mechanical properties of the CR emulsion, and the relationship between tensile strength, tear strength and surface free energy were investigated. The tensile and tear strengths of the CR emulsion incresed as the amount of calcium hydroxide and aluminum hydroxide increased. The highest tensile and tear strengths and surface free energy were observed for additions of 1.0% calcium hydroxide and 0.80% aluminum hydroxide, respectively. It was concluded that the interfacial bonding strength was improved by the even dispersion of calcium hydroxide and aluminum hydroxide in the CR emulsion.

Characterizations of Membrane for Water Treatment: Surface Charge Analysis by Electrophoresis and Acidity Measurements

  • Yongki Shim;Lee, Sangyoup;Moon, Seung-Hyeon;Jaeweon Cho
    • Korean Membrane Journal
    • /
    • v.2 no.1
    • /
    • pp.56-59
    • /
    • 2000
  • The surface charge properties of a polymeric NF and a ceramic UF membranes were characterized in terms of zeta potential and acidity. Both the negative zeta potential and acidity values increased as pH increases due to ionizable acidic functional groups. Increased ionic strength reduced the acidity of the negatively-charged membrane surface as anticipated. Through these results, it can be envisioned are used to reject solutes with ionizable functional groups. Fouling of the negatively-charged membrane with natural organic matter (NOM) having a negative charge density was also investigated with respect to the surface charge. The surface charge of the NF membrane increased negatively when greater NOM adsorption onto the membrane surface occured.

  • PDF

Removal of Red Tide Organisms -1. flocculation of Red Tide Organisms by Using IOSP- (적조생물의 구제 -1. IOSP에 의한 적조생물의 응집제거-)

  • KIM Sung-Jae;CHO Kyu-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.5
    • /
    • pp.448-454
    • /
    • 2000
  • This study was to examine the physicochemical characteristics of coagulation reaction between ignited oyster shell powder (IOSP) and red tide organisms (RTO), and its feasibility, in developing a technology for the removal of RTO bloom in coastal sea,IOSP was made from oyster shell and its physicochemical characteristics were examined for particle size distribution, surface characteristic by scanning electron microscope, zeta potential, and alkalinity and pH variations in sea water. Two kinds of RTO that were used in this study, Cylindrotheca closterium and Skeletonema costatum, were sampled in Masan bay and were cultured in laboratory. Coagulation experiments were conducted using various c(Incentrations of IOSP, RTO, and a jar tester. The supernatant and RTO culture solution were analyzed for pH, alkalinity, RTO cell number, IOSP showed positive zeta potentials of $11.1{\~}50.1\;mV\;at\;pH\;6.2{\~}12.7$, A positive zeta potential of IOSP slowly decreased with decreasing pNa 4,0 to 2,0. When pNa reached zero, the zeta potential approached zero, When a pMg value was decreased, the positive zeta potential of IOSP increased until pMg 3.0 and decreased below pMg 3.0. IOSP showed 4.8 mV of positive zeta potential while RTO showed -9.2 mV of negative zeta potential in sea water. A positive-negative EDL (electrical double-layer) interaction occurred between $Mg(OH)_2$ adsorption layer of IOSP and RTO in sea water so that EDL attractive force always worked between them. Hence, their coagulation reaction occurred at primary minimum on which an extreme attractive force acted because of charge neutralization by $Mg(OH)_2$ adsorption layer of IOSP. As a result, the coagulation reaction was rapidly processed and was irreversible according to DLVO (Deriaguin-Landau-Verwey-Overbeek) theory. Removal rates of RTO were exponentially increased with increasing both IOSP concentration and G-value. The removal rates were steeply increased until 50 mg/l of IOSP and reached $100{\%}\;at\;400\;mg/l$ of IOSP. Removal rates of RTO were $70.5,\;70.5,\;81.7,\;85.3{\%}$ for G-values of $1,\;6,\;29,\;139\;sec^(-1)$at IOSP 100 mg/l, respectively. This indicated that mixing (i.e., collision among particles) was very important for a coagulation reaction.

  • PDF

Recycling Water Treatment of Aquaculture by Using DynaSand Filter II. Effect of Coating on Removal of Bacteria and Virus in Sand Columns (상향류식 연속 역세 여과를 이용한 양어장 순환수 재리용 II. 여과사의 표면처리에 의한 세균 및 바이러스 처리율 검토)

  • 박종호;조규석;황규덕;김이오
    • Journal of Aquaculture
    • /
    • v.16 no.2
    • /
    • pp.76-83
    • /
    • 2003
  • To improve the efficiency of removal of bacteria and virus with DynaSand Filters used for treatment of recycling wastewater from aquaculture, effect of biofilm formation on bacterial transport through coated sand was estimated. At the neutral pH (pH 7.0), the coated sand was positive of zeta potential (surface charge). Column experiments were also carried out to test the effect of uncoated sand as well as coated sand with Al and Fe. The coated sand influenced more significantly the surface properties, adsorption and transport than the uncoated sand. The leaching batch system investigated for synthetic water showed concentrations of 7.47, 4.80, 20.89 and 7.23 mg/L for the uncoated sand, coated sand with Al, Fe and Al+Fe, respectively. Hence there are significant differences among the tested coatings with reference to bacterial transport and surface properties.