• Title/Summary/Keyword: Surface zeta potential

Search Result 260, Processing Time 0.044 seconds

A study on membrane technology for surface water treatment: Synthesis, characterization and performance test

  • Haan, Teow Yeit;Shah, Mubassir;Chun, Ho Kah;Mohammad, Abdul Wahab
    • Membrane and Water Treatment
    • /
    • v.9 no.2
    • /
    • pp.69-77
    • /
    • 2018
  • The use of membrane as an innovative technology for water treatment process has now widely been accepted and adopted to replace the conventional water treatment process in increasing fresh water production for various domestic and industrial purposes. In this study, ultrafiltration (UF) membranes with different formulation were fabricated via phase inversion method. The membranes were fabricated by varying the polymer concentration (16 wt%, 18 wt%, 20 wt%, and 21 wt%). A series of tests, such as field emission scanning electron microscope (FESEM), pore size and porosity, contact angle, and zeta potential were performed to characterize the membranes. The membrane performance in terms of permeation flux and rejection were evaluated using a laboratory bench-scale test unit with mine water, lake water and tube well as model feed solution. Long hour filtration study of the membranes provides the information on its fouling property. Few pore blocking mechanism models were proposed to examine the behaviour of flux reduction and to estimate the fouling parameters based on different degree of fouling. 21 wt% PVDF membrane with smaller membrane pore size showed an excellent performance for surface water treatment in which the treated water complied with NWQS class II standard.

Synthesis of Ceramide Nanoemulsion by High-Pressure Homogenizer and Evaluation of Its Stability (고압 균질기를 이용한 세라마이드가 함유된 나노에멀젼 제조 및 안정성 평가)

  • Hidajat, Marcel Jonathan;Noh, Jongho;Park, Jongbeom;Hong, Jaehwa;Kim, Hyeonhyo;Jo, Wantaek
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.530-535
    • /
    • 2020
  • A ceramide-containing nanoemulsion was synthesized by using a High-Pressure Homogenizer (HPH) to observe its changes in properties and long-term stability. The droplet size, droplet distribution and zeta potential of nanoemulsion were examined by varying the pressure and the number of passes of the HPH. The increase in HPH pressure and number of passes decreased the average droplet size and made the nanoemulsion more uniform. However, beyond certain operating condition, the recombination between the droplets was confirmed due to droplet surface energy and emulsifier. This study also shows that the decrease in droplet size increased the nanoemulsion viscosity although only minimal changes occurred in the zeta potential. The formed nanoemulsion was then tested for its stability by storing it at 25 and 45 ℃ for 28 days. During the first week, the average droplet size increased due to recombination and then subsequently remained constant. We confirmed that ceramide nanoemulsion for industrial application could be synthesized by using HPH.

Study on Softness of an EO Adducted Amine Oxide Zwitterionic Surfactant (EO가 부가된 아민 옥사이드 양쪽성 계면활성제의 유연력에 관한 연구)

  • Kim, JiSung;Mo, DaHee;Lee, JinSun;Park, JunSeok;Han, DongSung;Lim, JongChoo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.960-968
    • /
    • 2012
  • In this study, the measurement of physical properties of 3 different ethylene oxide adducted zwitterionic surfactants were measured such as critical micelle concentration, surface tension, interfacial tension, contact angle, viscosity and foam stability. Also, the dual function characteristics of the zwitterionic surfactants were investigated by determining an isoelectric point, which were obtained using zeta potential measurement and QCM (quartz crystal microbalance) experiments. The isoelectric point of the synthesized zwitterionic surfactant determined by zeta potential measurement was close to that obtained by QCM experiment and both results have shown almost the same trend as that determined by the frictional property measured using an automated mildness tester. In particular, it has been observed that all three surfactants used during this study provide better softening effect at a pH of neutral condition than at an acidic or an alkaline condition. This result indicates that the synthesized surfactants act as a cationic surfactant at a pH of neutral condition and thus provide good softening effect during a rinsing cycle in the detergency process.

Physical properties and intracellular uptake of polyethyleneglycol-incorporated cationic liposomes (폴리에틸렌글리콜이 도입된 양이온성 리포솜의 물리적 특성 및 세포이입효과)

  • Jung, Soon-Hwa;Jung, Suk-Hyun;Kim, Sung-Kyu;Seong, Ha-Soo;Cho, Sun-Hang;Shin, Byung-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.1
    • /
    • pp.15-21
    • /
    • 2008
  • Liposomes as one of the efficient drug carriers have some shortcomings such as their short circulation time, fast clearance from human body by reticuloendothelial system (RES) and limited intracellular uptake to target cell. In this study, polyethylenglycol (PEG)-incorporated cationic liposomes were prepared by ionic complexation of positively charged liposomes with carboxylated polyethyleneglycol (mPEG-COOH). The cationic liposomes had approximately $98.6{\pm}1.0nm$ of mean particle diameter and $42.8{\pm}0.8mV$ of zeta potential value. The PEG-incorporated cationic liposomes had $110.1{\pm}1.2nm$ of mean particle diameter with an increase of about 10 nm compared to the cationic liposomes. Zeta potential value of them was $12.9{\pm}0.6mV$ indicating 30mV decrease of cationic charge compared to the cationic liposomes. The amount of PEG which was incorporated onto the cationic liposomes was assayed by using picrate assay method and the incorporation efficiency was $58.4{\pm}1.1%$. Loading efficiency of model drug, doxorubicin, into cationic liposomes or PEG-incorporated cationic liposomes was about $96.0{\pm}0.7%$. Results of intracellular uptake which were evaluated by flow cytometry analysis of doxorubicin loaded liposomes showed that intracellular uptake of PEG-incorporated cationic liposomes was higher than the cationic liposomes or DSPE-mPEG liposomes. In addition, cytotoxicity of PEG-incorporated cationic liposomes was comparable to cationic liposomes. Consequently, the PEG-incorporated cationic liposomes of which surface was incorporated with PEG by ionic complex may be applicable as anticancer drug carriers that can increase therapeutic efficacy.

The Fundamental Study on th e Soil Remediation for Copper Contaminated Soil using Nanobubble Water (나노버블수에 의한 구리 오염 토양의 정화에 관한 기초 연구)

  • Jeong, So-Hee;Kim, Dong-Chan;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.1
    • /
    • pp.31-39
    • /
    • 2017
  • The fundamental study for an application of nanobubble as a soil remediation enhancer on heavy metal contaminated soil was carried out. The existence and long-term stability of hydrogen nanobubbles were investigated by particle analysis and zeta-potential analysis. And the removal efficiency of copper using nanobubble water(NBW) and distilled water(DW) were compared and analyzed through a batch desorption test. As a result, it is confirmed that nanobubble which was fabricated by compression-dissolution type generator can exist for more than 14 days. The results of batch test show that copper removal of NBW was higher than that of DW irrespectively to soil type and increased as solid-liquid ratio and contact time increased, respectively. According to the pH change, the removal of copper on sand was higher on the acid side but the removal difference was slightly lower on the clay. It is considered that a high efficiency of NBW in copper removal is due to the large surface area and high zeta-potential of nanobubbles. Therefore, the nanobubble can be applied to soil remediation for heavy-metal contaminated soil as an eco-friendly enhancer.

Improvement in the Dispersion Stability of Iron Oxide (Magnetite, Fe3O4) Particles with Polymer Dispersant Inject (고분자 분산제 주입을 통한 철산화물(Magnetite, Fe3O4) 입자의 분산 안정성 향상)

  • Song, Geun Dong;Kim, Mun Hwan;Lee, Yong Taek;Maeng, Wan Young
    • Applied Chemistry for Engineering
    • /
    • v.24 no.6
    • /
    • pp.656-662
    • /
    • 2013
  • The iron oxide ($Fe_3O_4$) particles in the coolant of the secondary system of a nuclear power plant reduce the heat transfer performance or induce corrosion on the surface of the heat transfer tube. To prevent these problems, we conducted a study to improve the dispersion stability of iron oxide using polymeric dispersant injection in simulated secondary system water. The three kinds of anionic polymers containing carboxyl groups were selected. The dispersion characteristics of the iron oxide particles with the polymeric dispersants were evaluated by performing a settling test and measuring the transmission, the zeta potential, and the hydrodynamic particle size of the colloid solutions. Polymeric dispersants had a significant impact on the iron oxide dispersion stability in an aqueous solution. While the dispersant injection tended to improve the dispersion stability, the dispersion stability of iron oxide did not increase linearly with an increase in the dispersant concentration. This non-linearity is due to the agglomerations between the iron oxide particles above a critical dispersant concentration. The effect of the dispersant on the dispersion stability improvement was significant when the dispersant concentration ratio (ppm, dispersant/magnetite) was in the range of 0.1 to 0.01. This suggests that the optimization of dispersant concentration is required to maximize the iron oxide removal effect with the dispersant injection considering the applied environments, the iron oxide concentration and the concentration ratio of dispersant to iron oxide.

Preparation of Lipid Nanoparticles Containing Paclitaxel and their in vitro Gastrointestinal Stability (파클리탁셀을 함유한 지질나노입자의 제조와 인공 소화액에서의 안정성 평가)

  • Kim, Eun-Hye;Lee, Jung-Eun;Lim, Deok-Hwi;Jung, Suk-Hyun;Seong, Ha-Soo;Park, Eun-Seok;Shin, Byung-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.2
    • /
    • pp.127-134
    • /
    • 2008
  • Peroral administration is the most convenient one for the administration of pharmaceutically active compounds. Most of poorly water-soluble drugs administered via the oral route, however, remain poorly available due to their precipitation in the gastrointestinal (GI) tract and low permeability through intestinal mucosa. In this study, one of drug delivery carriers, lipid nanoparticles (LNPs) were designed in order to reduce side effects and improve solubility and stability in GI tract of the poorly water soluble drugs. However, plain LNPs are generally unstable in the GI tract and susceptible to the action of acids, bile salts and enzymes. Accordingly, the surface of LNPs was modified with polyethylene glycol (PEG) for the purpose of improving solubility and GI stability of paclitaxel (PTX) in vitro. PEG-modified LNPs containing PTX was prepared by spontaneous emulsification and solvent evaporation (SESE) method and characterized for mean particle diameter, entrapping efficiency, zeta potential value and in vitro GI stability. Mean particle diameter and zeta potential value of PEG-modified LNP containing PTX showed approximately 86.9 nm and -22.9 mV, respectively. PTX entrapping efficiency was about 70.5% determined by UV/VIS spectrophotometer. Futhermore, change of particle diameter of PTX-loaded PEG-LNPs in simulated GI fluids and bile fluid was evaluated as a criteria of GI stability. Particle diameter of PTX-loaded PEG-LNPs were preserved under 200 nm for 6 hrs in simulated GI fluids and bile fluid at $37^{\circ}C$ when DSPE-mPEG2000 was added to formulation of LNPs above 4 mole ratio. As a result, PEG-modified LNPs improved stability of plain LNPs that would aggregate in simulated GI fluids and bile solution. These results indicate that LNPs modified with biocompatible and nontoxic polymer such as PEG might be useful for enhancement of GI stability of poorly water-soluble drugs and they might affect PTX absorption affirmatively in gastrointestinal mucosa.

A Study on Isoelectric Point and Softness of an Ethylene Oxide Adducted Amphoteric Surfactant (에틸렌 옥사이드가 부가된 양쪽성 계면활성제의 등전점 및 유연력에 관한 연구)

  • Lim, JongChoo;Park, JunSeok;Han, DongSung;Kim, JiSung;Lee, Seul;Mo, DaHee;Lee, JinSun
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.521-528
    • /
    • 2012
  • In this study, we analyzed the physical properties of an ethylene oxide adducted amphoteric surfactant such as critical micelle concentration, surface tension, interfacial tension, contact angle, viscosity and phase behavior. The dual function characteristics of an amphoteric surfactant were investigated by determining an isoelectric point, which were attained using zeta potential measurements and quartz crystal microbalance (QCM) experiments. The isoelectric points of DE3-OSA82-AO, DE5-OSA82-AO and DE9-OSA82-AO surfactant systems determined by zeta potential measurements were 6.97, 6.93 and 7.10 respectively and they are in good agreement with the isoelectric point values measured by QCM experiments. The frictional property measured using an automated mildness tester showed that the DE-OSA82-AO surfactant could provide a good softening effect at neutral condition.

Stripping of Asphalt Pavements and Antistripping Addities (도로포장 구조물에서의 스트리핑 현상과 스트리핑 방지제의 이용방안)

  • 윤현희
    • Journal of Korean Society of Transportation
    • /
    • v.8 no.2
    • /
    • pp.119-131
    • /
    • 1990
  • Physico-chemical properties of asphalt, aggregate, and asphalt-aggregate mixture that might influence stripping were summarized in Table 1, based on the fundamental theories concerning stripping. It was found that although physical properties of aggregate affected stripping, there was no strong correlation between the physical properties of aggregate, such as pore volume and surface area, and the stripping propensity of the aggregate. Chemical and electrochemical properties of aggregate surface in the presence of water were most important factors for stripping. All mineral aggregates tested in this study imparted distinctive pH values to the contacting water and possessed distinctive electrochemical properties as measured by zeta potential. It was found that aggregates which had relatively higher surface potential in water and/or which imparted relatively higher pH to the contacting water were more susceptible to stripping. The functionalities contained in antistripping additives tested were primary and secondary amines and those of organic nitrogen compounds. The functionalities were determined by examining their infrared spectra. Based on the interfacial energy concept, the contact angle of an asphalt drop on an aggregate surface immersed in water related to the stripping propensity. The contact angle and stripping propensity were markedly reduced by the presence of an antistripping additive. In general, all the additives tested improved stripping resistance to some extent, depending on their concentration in the asphalts. The optimum dosage of an additive varied with different asphalts, as well as different aggregates. All antistripping additives tested in this study lost their effectiveness and failed to function to some extent when maintained for hours in a hot asphalt.

  • PDF

Preparation of Nano Titania Sols and Thin Films added with Transition Metal Elements (전이금속원소들이 첨가된 나노 티타니아 졸 및 코팅막 제조)

  • Lee K.;Lee N. H.;Shin S. H.;Lee H. G.;Kim S. J.
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.634-641
    • /
    • 2004
  • The photocatalytic performance of $TiO_2$ thin films coated on porous alumina balls using various aqueous $TiOCl_2$ solutions as starting precursors, to which 1.0 $mol\%$ transition metal ($Ni^{2+},\;Cr^{3+},\;Fe^{3+},\;Nb^{3+},\;and\;V^{5+}$) chlorides had been already added, has been investigated, together with characterizations for $TiO_2$ sols synthesized simultaneously in the same autoclave through hydrothermal method. The synthesized $TiO_2$ sols were all formed with an anatase phase, and their particle size was between several nm and 30 nm showing ${\zeta}-potential$ of $-25{\sim}-35$ mV, being maintained stable for over 6 months. However, the $TiO_2$ sol added with Cr had a much lower value of -potential and larger particle sizes. The coated $TiO_2$ thin films had almost the same shape and size as those of the sol. The pure $TiO_2$ sol showed the highest optical absorption in the ultraviolet light region, and other $TiO_2$ sols containing $Cr^{3+},\;Fe^{3+}\;and\;Ni^{2+}$ showed higher optical absorption than pure sol in the visible light region. According to the experiments for removal of a gas-phase benzene, the pure $TiO_2$ film showed the highest photo dissociation rate in the ultraviolet light region, but in artificial sunlight the photo dissociation rate of $TiO_2$ coated films containing $Cr^{3+},\;Fe^{3+}\;and\;Ni^{2+}$ was measured higher together with the increase of optical absorption by doping.