• Title/Summary/Keyword: Surface urban heat island

Search Result 163, Processing Time 0.027 seconds

URBAN ENVIRONMENTAL QUALITY ANALYSIS USING LANDSAT IMAGES OVER SEOUL, KOREA

  • Lee, Kwon-H.;Wong, Man-Sing;Kim, Gwan-C.;Kim, Young-J.;Nichol, Janet
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.556-559
    • /
    • 2007
  • The Urban Environmental Quality (UEQ) indicates a complex and various parameters resulting from both human and natural factors in an urban area. Vegetation, climate, air quality, and the urban infrastructure may interact to produce effects in an urban area. There are relationships among air pollution, vegetation, and degrading environmental the urban heat island (UHI) effect. This study investigates the application of multi-spectral remote sensing data from the Landsat ETM and TM sensors for the mapping of air quality and UHI intensity in Seoul from 2000 to 2006 in fine resolution (30m) using the emissivity-fusion method. The Haze Optimized Transform (HOT) correction approach has been adopted for atmospheric correction on all bands except thermal band. The general UHI values (${\Delta}(T_{urban}-T_{rural})$) are 8.45 (2000), 9.14 (2001), 8.61 (2002), and $8.41^{\circ}C$ (2006), respectively. Although the UHI values are similar during these years, the spatial coverage of "hot" surface temperature (>$24^{\circ}C$) significantly increased from 2000 to 2006 due to the rapid urban development. Furthermore, high correlations between vegetation index and land surface temperature were achieved with a correlation coefficients of 0.85 (2000), 0.81 (2001), 0.84(2002), and 0.89 (2006), respectively. Air quality is shown to be an important factor in the spatial variation of UEQ. Based on the quantifiable fine resolution satellite image parameters, UEQ can promote the understanding of the complex and dynamic factors controlling urban environment.

  • PDF

Implementing the Urban Effect in an Interpolation Scheme for Monthly Normals of Daily Minimum Temperature (도시효과를 고려한 일 최저기온의 월별 평년값 분포 추정)

  • 최재연;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.4
    • /
    • pp.203-212
    • /
    • 2002
  • This study was conducted to remove the urban heat island effects embedded in the interpolated surfaces of daily minimum temperature in the Korean Peninsula. Fifty six standard weather stations are usually used to generate the gridded temperature surface in South Korea. Since most of the weather stations are located in heavily populated and urbanized areas, the observed minimum temperature data are contaminated with the so-called urban heat island effect. Without an appropriate correction, temperature estimates over rural area or forests might deviate significantly from the actual values. We simulated the spatial pattern of population distribution within any single population reporting district (city or country) by allocating the reported population to the "urban" pixels of a land cover map with a 30 by 30 m spacing. By using this "digital population model" (DPM), we can simulate the horizontal diffusion of urban effect, which is not possible with the spatially discontinuous nature of the population statistics fer each city or county. The temperature estimation error from the existing interpolation scheme, which considers both the distance and the altitude effects, was regressed to the DPMs smoothed at 5 different scales, i.e., the radial extent of 0.5, 1.5, 2.5, 3.5 and 5.0 km. Optimum regression models were used in conjunction with the distance-altitude interpolation to predict monthly normals of daily minimum temperature in South Korea far 1971-2000 period. Cross validation showed around 50% reduction in terms of RMSE and MAE over all months compared with those by the conventional method.conventional method.

Influences of Urban Trees on the Control of the Temperature (도시의 수목이 기온의 조절에 미치는 영향)

  • 김수봉;김해동
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.3
    • /
    • pp.25-34
    • /
    • 2002
  • The purpose of this paper is to discuss the function of microclimate amelioration of urban trees regarding the environmental benefits of street trees in summer, focusing on the heat pollution-urban heat island, tropical climate day's phenomenon and air pollution. We measured the diurnal variation of air/ground temperatures and humidity within the vegetation canopy with the meteorological tower observation system. Summertime air temperatures within the vegetation canopy layer were 1-2$^{\circ}C$ cooler than in places with no vegetation. Due to lack of evaporation, the ground surface temperatures of footpaths were, at a midafternoon maximum, 8$^{\circ}C$ hotter than those under trees. This means that heat flows from a place with no vegetation to a vegetation canopy layer during the daytime. The heat is consumed as a evaporation latent heat. These results suggest that the extension of vegetation canopy bring about a more pleasant urban climate. Diurnal variation of air/ground temperatures and humidity within the vegetation canopy were measured with the meteorological tower observation system. According to the findings, summertime air temperatures under a vegetation canopy layer were 1-2$^{\circ}C$ cooler than places with no vegetation. Due mainly to lack of evaporation the ground surface temperature of footpaths were up to 8$^{\circ}C$ hotter than under trees during mid-afternoon. This means that heat flows from a place where there is no vegetation to another place where there is a vegetation canopy layer during the daytime. Through the energy redistribution analysis, we ascertain that the major part of solar radiation reaching the vegetation cover is consumed as a evaporation latent heat. This result suggests that the expansion of vegetation cover creates a more pleasant urban climate through the cooling effect in summer. Vegetation plays an important role because of its special properties with energy balance. Depended on their evapotranspiration, vegetation cover and water surfaces diminish the peaks of temperature during the day. The skill to make the best use of the vegetation effect in urban areas is a very important planning device to optimize urban climate. Numerical simulation study to examine the vegetation effects on urban climate will be published in our next research paper.

Mitigating the Urban Heat Island Phenomenon Using a Water-Retentive Artificial Turf System

  • Tebakari, Taichi;Maruyama, Tatsuya;Inui, Masahiro
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.91-100
    • /
    • 2010
  • To investigate the thermal properties of a water-retentive artificial turf system (W-ATS), we estimated hydrologic parameters including thermal conductivity, heat capacity, and surface albedo for both the W-ATS and natural grass. We used a model experiment to measure surface temperature and evaporation for both the W-ATS and natural grass. We found that the W-ATS had lower thermal conductivity than natural grass did, and it was difficult for the W-ATS to convey radiant heat to the ground. Compared to natural grass, the W-ATS also had lower heat capacity, which contributed to its larger variation in surface temperature: the W-ATS had higher surface temperatures during daytime and lower surface temperatures during nighttime. The albedo of the W-ATS was one-quarter that of natural grass, and reflected shortwave radiation from the W-ATS surface was lower than that from the surface of natural grass. These results indicate that the W-ATS caused the soil temperature to increase. Furthermore, evaporation from the W-ATS was one-quarter the value of evapotranspiration from natural grass.

  • PDF

Temperature Monitoring of Vegetation Models for the Extensive Green Roof (관리조방형 옥상녹화의 식재모델별 표면온도 모니터링)

  • Youn, Hee-Jung;Jang, Seong-Wan;Lee, Eun-Heui
    • KIEAE Journal
    • /
    • v.13 no.5
    • /
    • pp.89-96
    • /
    • 2013
  • Green roofs can reduce surface water runoff, provide a habitat for wildlife moderate the urban heat island effect, improve building insulation and energy efficiency, improve the air quality, create aesthetic and amenity value, and preserve the roof's waterproofing. Green roofs are mainly divided into three types : intensive, simple-intensive, and extensive. Especially, extensive roof environment is a harsh one for plant growth; limited water availability, wide temperature fluctuations, high exposure to wind and solar radiation create highly stressed environment. This study, aimed at extensive green roof, was carried out on the rooftop of the library at Seoul Women's Univ. from October to November, 2012 and from March to August, 2013. To suggest the most effective vegetation model for biodiversity and heat island mitigation, surface temperatures were monitored by each vegetation model. We found that herbaceous plants of Aster sphathulifolius, Aceriphyllum rossii and Belamcanda chinensis, shrub of Syringa patula 'Miss Kim', Thymus quinquecostatus var. japonica, Sedum species can mixing each other. Among them, the vegetation models including Sedum takesimense, Aster sphathulifolius, Thymus quinquecostatus var. japonica was more effective on the surface temperature mitigation, because the species have the tolerance and high ratio of covering, and also in water. Especially, in the treatment of bark mulching, they helped to increase the temperature of vegetation models. In the case of summer, temperature mitigation of vegetation models were no significant difference among vegetation types. Compared to surface temperature of June, July and August were apparent impact of temperature mitigation, it shows that temperature mitigation are strongly influenced by substrate water content.

Investigation of Urban Environmental Quality Using an Integration of Satellite, Ground based measurement data over Seoul, Korea

  • Lee, Kwon-Ho;Wong, Man-Sing;Kim, Young-J.
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.339-351
    • /
    • 2011
  • This study investigates the potentials of satellite, ground measurement data, and geo-spatial information within an urban area for the mapping of the Urban Environmental Quality (UEQ) parameters. The UEQ indicates a complex and various parameters resulting from both human and natural factors, which are greenness, climate, air pollution, the urban infrastructure, and etc. Multi-spectral remote sensing data from the Landsat ETM and TM sensors for the mapping of air pollution by the Haze Optimized Transform (HOT) technique, Urban Heat Island (UHO using the emissivity-fusion method in Seoul from 2000 to 2006 in fine resolution (30m) were analyzed for the estimation of UEQ index. Although the UHI values are similar ($8.4^{\circ}C{\sim}9.1^{\circ}C$) during these years, the spatial coverage of "hot" surface temperature (> $24^{\circ}C$) significantly increased from 2000 to 2006 due to the rapid urban development. Furthermore, high correlations between vegetation index and land surface temperature were achieved with a correlation coefficients of 0.85 (2000), 0.81 (2001), 0.84 (2002), and 0.89 (2006), respectively. It was found that the proposed method was successfully analyzed spatial structure of the UEQ and the scenarios of the best and worst areas within the city were also identified. Based on the quantifiable fine resolution satellite image parameters, UEQ can promote the understanding of the complex and dynamic factors controlling urban environment.

A Fundamental Study on the Relationship Between Riparian Vegetation and Surface Temperature - Focused on Cheonggaecheon Stream Restoration - (하천 및 녹지와 온도의 관계에 대한 기초적 연구 - 청계천 복원을 중심으로 -)

  • Kim, Jae-Uk;Lee, Dong-Kun;Oh, Kyu-Shik;Sung, Hyun-Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.3
    • /
    • pp.79-85
    • /
    • 2003
  • Human beings have pursued development and economic betterment; thus, enhancing convenience and prosperity. A flourish of human civilization upon the industrialization results a massive urbanization. However, human beings have connived the environmental importance in the course of rapid urbanization. The environmental quality now becomes one of the most important factors that determine the quality of life in a city. Many studies were proceeded about the heat island effect in large cities. In general, most studies have been done to investigate urban microclimate phenomena using meteorological network or AWS (automatic weather station) data. Those preceding studies do not seem to sufficiently reflect the and thus, failed to show regional representative. In this study, temporal Landsat TM satellite imageries of May 20, 1987 and May 21, 1999 were 뻐d in order to detect the surface temperature of the study area using the band 6 ($10.4{\mu}m{\sim}12.5{\mu}m$). The surface temperature distribution detected by the band 6 of Landsat TM was over layed with the land cover classification data in order to investigate the temperature difference of the paved road and the riparian areas of the stream. As a result, a surface temperature difference as much as $3^{\circ}C$ between the paved road and the riparian areas with vegetation was observed. This study concludes that the land cover change is one of the main causes of urban heat island effect which may be closely affected by the paved areas and roads. Besides, the change of the atmospheric temperature followed by the urban secular change could have been confirmed. In the case of Yangjaecheon stream which underwent a heavy environmental restoration in 1995, the temperature was decreased as much as $0.6^{\circ}C$ after the restoration. The results of this study is expected to contribute to develop an urban space in harmony with the healthy human life and the environment respecting the crucial role of vegetation to stabilize the urban environmental dynamics.

The Impacts of Built Environmental Features on the Land Surface Temperatures for the Heat Wave Seasons in Gwangju, South Korea (도시화에 따른 건조환경이 하절기 광주시 외부공간의 열환경에 미치는 영향에 대한 연구)

  • Hong, Sung-Woon;Yang, Dongwoo;Oh, Byoung-Chull
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.67-82
    • /
    • 2019
  • This study aims to examine the impacts of built environmental features on the nocturnal and diurnal temperatures during the heat wave season in Gwangju, Korea. Built environmental measures are summarized at micro-scale level, such as 50 meters and 100 meters from temperature monitoring spots. Regressing the built environment on nocturnal and diurnal temperatures, we estimate how the artificial constructs contribute to temperature either day and night times. We found that impervious surface ratio is positively and negatively associated with nocturnal and diurnal temperatures, respectively. Buildings and structures tend to construct high thermal mass and absorb heat during day time and emit it for the night time. This property contributes to the nocturnal temperature model. On the other hand, urban areas with more vertical structure tend to block sun radiation more than rural, and it is more likely to find the negative relationship between impervious surface ratio and the diurnal temperatures.

Estimation of Urban Heat Island Potential Based on Land Cover Type in Busan Using Landsat-7 ETM+ and AWS Data (Landsat-7 ETM+ 영상과 AWS 자료를 이용한 부산의 토지피복에 따른 여름철 도시열섬포텐셜 산출)

  • Ahn, Ji-Suk;Hwang, Jae-Dong;Park, Myung-Hee;Suh, Young-Sang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.65-77
    • /
    • 2012
  • This study examined changes in land cover for the past 25 years in Busan and subsequently evaluated heat island potential by using land surface temperature and observation temperature data. The results were as below. The urban area of Busan increased by more than 2.5 times for the past 25 years from 1975 to 2000. It was believed that an increase in the pavement area of city within such a short period of time was an unprecedented phenomenon unique to our country. It could be assumed that urban heat island would be worsened through this process. After analyzing the land temperature according to the land cover, it was shown that there were noticeable changes in the temperature of urban & built-up and mountain & forest areas. In particular, the temperature rose to $36{\sim}39^{\circ}C$ in industrial areas during the summer, whereas it went down to $22{\sim}24^{\circ}C$ in the urban areas at whose center there were mountains. It was found that heat island potential according to the level of land cover had various values depending on the conditions of land cover. Among the areas of urbanization, the industrial area's heat island potential is 6 to $8^{\circ}C$, and the residential and commercial area's is $0{\sim}5^{\circ}C$, so it has been found that there is high possibility to induce urban heat islands. Meanwhile, in the forest or agricultural area or the waterside, the heat island potential is $-6{\sim}-3^{\circ}C$. With this study result, it is possible to evaluate the effects of temperature increase according to the urban land use, and it can be used as foundational data to improve urban thermal environment and plan eco-friendly urban development.

Analysis of Areas Vulnerable to Urban Heat Island Using Hotspot Analysis - A Case Study in Jeonju City, Jeollabuk-do - (핫스팟 분석을 이용한 도시열섬 취약지 특성 분석 - 전주시를 대상으로 -)

  • Ko, Young-Joo;Cho, Ki-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.5
    • /
    • pp.67-79
    • /
    • 2020
  • Plans to mitigate overheating in urban areas requires the identification of the characteristics of the thermal environment of the city. The key information is the distribution of higher and lower temperatures (referred to as "hotspot" or "coldspot", respectively) in the city. This study aims to identify the areas within Jeonju City that are suffering from increasing land surface temperatures (LST) and the factors linked to such this phenomenon. To identify the hot and cold spots, Local Moran's I and Getis-Ord Gi* were calculated for the LST based on 2017 images taken using the thermal band of the Landsat 8 satellite. Hotspot analysis revealed that hotspot regions, (the areas with a high concentration of Land Surface Temperature) are located in the old town area and in industrial districts. To figure out the factors linked to the hotspots, a correlation analysis, and a regression analysis taking into account environmental covariates including Normalized Difference Vegetation Index (NDVI) and land cover. The values of NDVI showed that it had the strongest effect on the lowering LSTs. The results of this study are expected to provide directions for urban thermal environment designing and policy development to mitigate the urban heat island effect in the future.