• Title/Summary/Keyword: Surface tension effect

Search Result 390, Processing Time 0.027 seconds

Model on the Contact Lens Movement from Eye-lid Blinking (순목 작용에 의한 콘택트 렌즈의 운동 모델)

  • Kim, Daesoo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.1
    • /
    • pp.145-159
    • /
    • 2004
  • A mathematical model and its computer solution program were proposed to analyze the motion of contact lenses which are being subject to lid-blinking. The equation was derived by incorporating an acceleration induced lid's force exerting on the contact lens, the viscous damping resistance in the tear layer beneath the lens and the sliding frictional force between the lid and the contact lens surface into the formulation of differential equation describing the vibration. The model predicts the time-dependent displacement from the equilibrium postion during/after the blinking. During the blinking, as the time for the completion of one cycle of blinking decreases the off-the-equilibrium displacement of contact lens increases while the decrease of diameter in the contact cause the opposite effect. It is found that lid pressure exerting on the lens cause an insignificant lens displacement from the equilibrium position. After blinking the frequency of damped oscillation of contact lens decreases as the diameter of lens increases, due to the incresed surface while the reduced blinking time does not cause a significant frequency change. This is because that driving force for the contact lens movement posterior to blinking is the capillary-induced force not the lid force.

  • PDF

FRICTION UNITS FOR THE MOON

  • Drozdov, Yu.N.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.389-396
    • /
    • 2002
  • In XXI century it is necessary to expect the recommencement and development of activities on mastering the Moon. In the long term it is construction of manned lunar bases with industrial, astrophysical, procuring, repair equipment and services. Interplanetary flights from the Moon demand smaller power expenditures, than from the Earth, therefore it is favourable to use its surface for the construction of space-vehicle launching sites. Flights of devices in libration points in the system 'Earth - Moon' are considered. Experience of engineering system creation for the Moon displays the great complexity in provision of serviceability and reliability of friction units. Open friction units should operate under following conditions on the Moon: pressure of environment (vacuum) $p\;>10\;^{-10}$ Pa; wide range of temperature change $+150^{\circ}C\;...170^{\circ}C$; high evaporability of lubricants; influence of temperature gradients and warping of constructions; sublimation of elements of constructional materials; irradiation of different physical nature; effect of micrometeorites; reduced gravitation; influence of abrasive particles of lunar ground; requirements on minimization of size and weight characteristics of a construction (high tension); undesirability (impossibility) of application of liquid and plastic lubricants; vibration, shock, acoustic loadings during start and landings to the Earth; difficulties in repair-regenerative operations in conditions of the Moon etc. Adhesive interaction of conjugated surfaces is the principal reason of possible failures of rubbed units on the Moon. In the research of the Moon automatic interplanetary stations of 'Luna' (USSR), 'Surveyer', 'Apollo' (USA) series were used. Stations executed functions of flying, landing, artificial satellites of the Moon, moon-rovers and manned spacecrafts such as 'Apollo'. The experimental- theoretical researches carried out in the sixtieth years on tribology for conditions of the Moon appeared to be rather useful to engineering of an outer space exploration and the decision of complex problems for the friction units operating in extreme conditions on the Earth. For the creation of highly loaded friction units for the long service life on the Moon it is required not only to use accumulated experience and designed technologies, but also to carry out wide scientific research.

  • PDF

A Study on Processing-Structure-Property Relationships of Extruded Carbon Nanomaterial-Polypropylene Composite Films (탄소나노튜브 및 그래핀 나노플레이트 폴리프로필렌 복합재 필름 압출 및 물성 평가)

  • Kim, Byeong-Joo;Deka, Biplab K.;Kang, Gu-Hyuk;Hwang, Sang-Ha;Park, Young-Bin;Jeong, In-Chan;Choi, Dong-Hyuk;Son, Dong-Il
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.254-258
    • /
    • 2013
  • Polypropylene films reinforced with multi-walled carbon nanotubes and exfoliated graphite nanoplatelets were fabricated by extrusion, and the effects of filler type and take-up speed on the mechanical properties and microstructure of composite films were investigated. Differential scanning calorimetry revealed that the addition of carbon nanomaterials resulted in increased degree of crystallinity. However, increasing the take-up speed reduced the degree of crystallinity, which indicates that tension-induced orientations of polymer chains and carbon nanomaterials and the loss of degree of crystallinity due to rapid cooling at high take-up speeds act as competing mechanisms. These observations were in good agreement with tensile properties, which are governed by the degree of crystallinity, where the C-grade exfoliated graphite nanoplatelet with a surface area of $750m^2/g$ showed the greatest reinforcing effect among all types of carbon nanomaterials used. Scanning electron microscopy was employed to observe the carbon nanomaterial dispersion and orientation, respectively.

Initiation and Growth Behavior of Small Fatigue Cracks in the Degraded 2 1/4 Cr-1 Mo Steel (2 1/4 Cr-1 Mo강 劣化材의 微小 疲勞龜裂의 발생 및 진전거동)

  • 곽상국;장재영;권재도;최선호;장순식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.53-62
    • /
    • 1992
  • Material can be degraded by using it for a long service under the high temperature and pressure circumstances, Therefore, material degradation can affect the strength of mechanical structures. At present, the life prediction of the degraded structures is considered as an important technical problem. In this paper, the degraded 21/4Cr-lMo steel is the material used for about 10 years around 400.deg. C in an oil refinery plant. The recovered one was prepared out of the above degraded steel by heat treatment for one hour at 650.deg. C. The degradation effect was investigated through the tension test, Hardness test and Charpy impact test. On the smooth surface material, the fatigue crack initiation, growth and coalescence stages of the distributed small cracks were investigated with photographs, and the crack length and density were measured. The measuring results were analyzed by quantative and statistical methods.

Development of Peel off style high viscosity Epoxy for exhumed historic sites (유구 이전복원을 위한 표면 박리형 Epoxy polymer의 개발)

  • Han, Won-Sik;Hong, Tae-Kee;Lim, Sung-Jin;Wi, Koang-Chul
    • Journal of Conservation Science
    • /
    • v.22
    • /
    • pp.77-86
    • /
    • 2008
  • The pre-treatment for conservation must be needed for the exhumed historic sites. So, the study of conservation and restoration of historical sites has progressed favorably with using various polymers for solving upper problems. The problems which should be essentially solved for conservation of the exhumed historic sites are, however, using reinforcing agents that don't impair their original forms and sorting reinforcing agents on the lines of the historic sites' soil. These agents should be able to use without the effect of outer environments like marsh, winter time or temperature. In this work, we synthesized Epoxy resin and Epoxy hardener for the restoration of historical sites. These products have very good tension strength and adhesion strength and various physical properties that the users want. Particularly, these epoxy with high viscosity have good separation of between Epoxy final product and Urethane pre-surface.

  • PDF

Analysis of Hydraulic Characteristics of Spillway using Hydraulic Model Experiments and Numerical Analysis (수리모형실험 및 수치해석을 통한 여수로 수리특성 분석)

  • Lee, Jong-Kyu;Lee, Jai-Hong;Kim, Joo-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1818-1822
    • /
    • 2008
  • Generally, not only in order to design three dimensional hydraulic structures such a spillway and to investigate the hydraulic phenomena concerning hydraulic facilities, but also to grasp shape and stability, we simulate actuality phenomenon through hydraulic model experiments. However, it requires too much times, expense and space to perform hydraulic model experiments, as well as it is very difficult to measure reduced scale of actual hydraulic structures. Besides, surface tension can exert fair effect in experiment result, and occasionally an experiment of various case is impossible actually. Therefore, there is necessity to draw proper early result through numerical analysis, and if decide the case of a hydraulic model experiment through the numerical analysis and compare the result, finally economical and reasonable design hydraulic structures are available. This study performs numerical analysis of overflow spillway and an experimental study of hydraulic model tests to design the optimal spillway and suggest a better design to improve hydraulic conditions. From the measurements, revised designs for an hydraulic structure are suggested and consequent improvement effects by the new design are also investigated.

  • PDF

Effect of Temperature and Plow Pan on Water Movement in Monolithic Weighable Lysimeter with Paddy Sandy Loam Soil during Winter Season

  • Seo, Mijin;Han, Kyunghwa;Jung, Kangho;Cho, Heerae;Zhang, Yongseon;Choi, Seyeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.300-309
    • /
    • 2016
  • The monolithic weighing lysimeter is a useful facility that could directly measure water movement via layers, drainage, and evapotranspiration (ET) with precise sensors. We evaluated water movement through layers and water balance using the lysimeter with undisturbed paddy sandy loam soil, Gangseo soil series (mesic family of Anthraquic Eutrudepts classified by Soil Taxonomy) during winter season from Dec. 2014 to Feb. 2015. Daily ET indicated up to 1.5 mm in December and January and 2 mm in February. The abrupt increase of soil water tension at the depth of 0.1 m, when soil temperature at the same depth was below $2^{\circ}C$, was observed due to temporary frost heaving. The surface evaporation was less than reference ET below -15 kPa of soil water potential at the depth of 0.1 m. The maximum drainage rate was similar to the saturated hydraulic conductivity of a plow pan layer. Both upward and downward water movement, related to ET and drainage, were retarded by a plow pan layer. This study demonstrated that the lysimeter study could well quantify water balance components even under frost heaving during winter season and that a plow pan with low permeability could act as a boundary that affects drainage and evapotranspiration.

A Study on the Effects of Wind Load of Membrane Roof Structures according to External Form (외형에 따른 지붕 막구조물의 풍하중 영향 고찰)

  • Ko, Kwang-Woong;Jang, Myung-Ho;Lee, Jang-Bog;Sur, Sam-Yeol
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.15-18
    • /
    • 2008
  • A Spatial structure, having a curvature with a curved surface, is an extremely efficient mechanical creation considering the external load. It is resisted the out-of-plane direction load by in-plane forces using the structure's curvature. Spatial Structures include many types of structures, such as: space frames or grids; cable-and-strut and tensegrity; air-supported or air-inflated; self-erecting and deployable; cable net; tension membrane; lightweight geodesic domes; folded plates; and thin shells. Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. It is very important that effects by wind load than seismic and dead load. And, wind load is different by surrounding and shape of building In this study, we analyze the results of design wind load and wind tunnel tests about the 2 stadiums which are constructed on sensitive sites by effect of wind loads.

  • PDF

Effects of Fiber Wall Thickness on Paper Properties Using CLSM (CLSM을 이용한 고해과정 중 섬유벽 두께 변화의 종이 특성 영향 분석)

  • 김서환;박종문;김철환
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.1
    • /
    • pp.39-45
    • /
    • 1999
  • Refining in papermaking plays an important role in changing fiber properties as well as paper properties. The major effects of refining on pulp fibers are internal and external fibrillation, fiber shortening, and fines formation. Many workers showed that internal fibrillation of the primary refining effects was most influential in improving paper properties. In particular, refining produces separation of fiber walls into several lamellae, thus causing fiber wall swelling with water penetration. This leads to the increase of fiber flexibility and of fiber-to-fiber contact during drying. If the fibers are very flexible, they will be drawn into close contact with each other by the force of surface tension as the water is removed during the drainage process and drying stages. In order to study the effect of fiber wall delamination on paper properties, cross-sectional image of fibers in a natural condition had to be generated without distortion. Finally, it was well recognized that confocal laser scanning microscope (CLSM) could be one of the most efficient tool for creating and quantifying fiber wall delamination in combination with image analysis technique. In this study, the CLSM could be used not only to observe morphological features of transverse views of swollen fibers refined under low and high intensity, but also to investigate the sequence of fiber wall delamination and fiber wall breakage. From the CLSM images, increasing the specific energy or refining decreased the degree of fiber collapse, fiber cross-sectional area, fiber wall thickness and lumen area. High intensity refining produced more external fibrillation.

  • PDF

Fundamental Studies on Human Sciences by Facial Form Analysis - Based on Unit Fluid Model of Essence, Qi energy, Emotion, Blood - (안면형상연구의 인간과학적 기초 연구 - 정기신혈(精氣神血)의 유체역학적(流體力學的) 해석을 중심으로 -)

  • Kim, Jong-Won;Lee, In-Seon;Kim, Kyu-Kon;Lee, Yong-Tae;Kim, Kyung-Chul;Eom, Hyun-Sup;Chi, Gyoo-Yong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.5
    • /
    • pp.1057-1061
    • /
    • 2008
  • For the purpose of investigating the reasonable logics contained in physiognomy of east and old western medicine. hypothetical researches based on hydromechanics theory were performed concerning facial types of form and pathologic features, especially 4 types of Dr. Jisan-Essence, Qi energy. Emotional Activity and Blood(EQAB). In order to infer the functional relation between facial type forming and EQAB factors, EQAB were supposed as fluid grounded on their continual flowing or periodical change and pressure effect from its congestion. and a premise that there's a linear corresponding relationship between the appearance of organ and its physical conditions of its inner vessels is formed too. Through this work, the unit fluid model(UFM) of Essence can be assumed as circle shape formed by the high viscosity and surface tension, the UFM model of Qi energy as quadrangular shape by the scattering features to outer four directions, and the UFM of emotional activity as inverted triangular shape by the flippant and uprising features, and the UFM of blood as ellipsoid triangle by the heavy and descending features in spite of circulation. The shapes made from each UFM are reproduced in the process of human development and manifest respective facial shape through the self-reproduction method like fractal theory in the last. Conclusively. it is said that the facial form analysis method like EQAB type theory can be the useful methodology to understand the human pathological and physiological features in view of hydromechanics.