• Title/Summary/Keyword: Surface strain

Search Result 1,797, Processing Time 0.024 seconds

Qualitative Enzyme-Linked Immunosorbent Assay (ELISA) for the Diagnosis of Edwardsiellosis (Edwardsiellosis의 진단을 위한 정성적 ELISA법)

  • Kim, Myoung-Sug;Hwang, Eun-A;Huh, Min-Do;Jeong, Hyun-Do
    • Journal of fish pathology
    • /
    • v.12 no.1
    • /
    • pp.24-31
    • /
    • 1999
  • Optimization and standardization of solid phase enzyme immunoassay were done for the diagnosis of edwardsiellosis in fish. The analyzed degree of immobilized antibody on surface of solid phase with peroxidase saturation method showed the optimized result by using partially purified $50{\mu}g/ml$ of rabbit anti-E. tarda Edk-2 antibody in sodium bicarbonate buffer for overnight incubation to cover the surface of polystyrene beads. Optimized immunoreaction was observed in the treatment of $50{\mu}g/ml$ of biotin conjugated antibody followed extravidin-peroxidase diluted 1 : 2,000 in PBS. The detectable concentrations of the this method were $1{\times}10^5$ cells/ml and $1{\times}10^5$ cells/ml expressed as the source of antigen amount for EDTA extraction and heat extraction, respectively. High cross-reaction of solid phase ELISA with the prepared rabbit and-E. tarda Edk-2 was observed against E. tarda strains isolated from flounder suffering from edwardsiellosis in aquatic farms of Korea. It suggested that the potential of this solid phase of ELISA technique is very powerful for the application to different strains of E. tarda isolated in farms of many different areas.

  • PDF

Technological Characteristics and Safety of Enterococcus faecium Isolates from Meju, a Traditional Korean Fermented Soybean Food (메주 유래 Enterococcus faecium 균주의 기능적 특성 및 안전성)

  • Oh, Yeongmin;Kong, Haram;Jeong, Do-Won;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.2
    • /
    • pp.255-263
    • /
    • 2021
  • In this study, we assessed the technological characteristics and safety of 88 Enterococcus faecium strains isolated from meju; the strains possess the glutamate decarboxylase gene gadA/B involved in γ-aminobutyric acid production. The study was conducted to evaluate the possibility of introducing E. faecium meju isolates as food fermentation starters. We observed that a NaCl concentration of 6% (w/v) facilitated the growth and acid production of all strains. At a NaCl concentration of 7%, 21 strains (24%) exhibited a low growth rate, 72 strains (82%) a weak acid production, and 16 strains (18%) showed no acid production. All strains exhibited protease activity at a NaCl concentration of 4%. At a NaCl concentration of 5%, 86 strains exhibited weak activity, and one strain showed no protease activity. We could not detect any lipase activity in the investigated strains. None of the strains exhibited an acquired antibiotic resistance to the seven antibiotics tested in the present study, namely ampicillin, chloramphenicol, ciprofloxacin, gentamicin, penicillin G, tetracycline, and vancomycin. We could identify the Enterococcus endocarditis antigen gene efaA and the tyrosine decarboxylase gene tdc contributing to tyramine production, in 88 meju isolates. We could not detect the Enterococcus surface protein gene esp, which is specifically possessed by human-originated E. faecium strains, in any of the 88 strains tested in the study.

Field Evaluation of Traffic Wandering Effect on Asphalt Pavement Responses (차량의 횡방향 주행이격에 의한 아스팔트 콘크리트 포장의 응답특성 분석)

  • Seo, Youngguk;Kwon, Soon-Min;Lee, Jae-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.453-459
    • /
    • 2006
  • This paper presents an experimental evaluation of wandering effect on asphalt concrete pavement responses. A laser-based wandering system has been developed and its performance is verified under various field conditions. The portable wandering system composed of two laser sensors with Position Sensitive Devices can allow one to measure the distance between laser sensors and tire edges of moving vehicle. Therefore, lateral position of each wheel on the pavement can be determined in a real time manner. Pavement responses due to different loading paths are investigated using a roll over test which is carried out on one of asphalt surfaced pavements in the Korea Highway Corporation test road. The pavement section (A5) consists of 5 cm thick surface course; 7 cm intermediate course; and 18 mm base course, and is heavily instrumented with strain gauges, vertical soil pressure cells and thermo-couples. From the center of wheel paths, seven equally-spaced lateral loading paths are carefully selected over an 140 cm wandering zone. Test results show that lateral horizontal strains in both surface and intermediate courses are mostly compressive right under the loading path and tensile strains start to develop as the loading offset becomes 40 cm from the wheel path. The development of the vertical stresses in the top layers of subbase and anti-frost is found to be minimal once the loading offset becomes 50 cm.

Isolation and Mycelial Cultivation Submerged of Phellinus sp. (Phellinus sp.의 분리 및 균사체의 액체배양)

  • Kang, Tae-Su;Lee, Dong-Gi;Lee, Shin-Young
    • The Korean Journal of Mycology
    • /
    • v.25 no.4 s.83
    • /
    • pp.257-267
    • /
    • 1997
  • Fruit bodies similar to the Phellinus sp. residing on the mulberry were collected at Yang-yang in Kang-won-do province and one strain of Phellinus sp. was isolated from the fruit bodies. For mass production of the isolated mycelia in a submerged culture, the culture conditions, medium composition, and the effect of various culture systems on the mycelial growth, were investigated. The morphological characteristics of the fruit body were as follows: covered with blackish to black and rough, lower surface with yellowish-brown to dull-brown and smooth, 5-7 cm thick and hard woody. Also, the pure cultured mycelia showed yellowish-brown color, capability of purplish-brown pigment production on the PDA plate media, no-formation of clamp-connection, much binding branch, and enzyme activities such as laccase, tyrosinase and peroxidase. Therefore, pure cultured strain was identified to be Phellinus sp. In the flask culture, the optimum culture conditions for the mycelial production were obtained after cultivation of 8 days at inoculum level of 5%(v/v), media volume of 70 mL, 150 rpm, initial pH 6, and temperature of $30^{\circ}C$. Optimum medium composition from the response surface analysis were determined to be glucose 12.12 g/L, sucrose 12.12 g/L, yeast extract 11.15 g/L, malt extract 11.15 g/L, $KH_2PO_4$ 0.855 g/L and $CaCl_2$ 0.855 g/L. The production of the mycelia after 4 and 8 days of cultivation was 1.95 and 9.89 g/L, respectively. The maximum specific growth rate and productivity were $0.020\;hr^{-1}$ and 1.25 g/L/day, respectively. Among the three different culture systems for the growth of mycelia, the maximum mycelial dry weight of 7.5 g/L was obtained after cultivation of 4 days in the air-lift fermentor under aeration rate of 2.5 vvm. The maximum specific growth rate and productivity were $0.033\;hr^{-1}$ and 1.9 g/L/day, respectively, which were about 1.7 and 4.2 times higher than those of flask culture.

  • PDF

The effect of the revolution and forwarding speed of the rotary blade on the tilling power requirement (로우터리 경운(耕耘)날의 회전속도(回轉速度) 및 작업속도(作業速度)가 경운소요동력(耕耘所要動力)에 미치는 영향(影響))

  • Kwon, Soon Goo;Kim, Soung Rai
    • Korean Journal of Agricultural Science
    • /
    • v.11 no.1
    • /
    • pp.160-175
    • /
    • 1984
  • This study was carried out to analyze the effects of the revolution and forwarding speed of the rotary blade and the edge curves which were $30^{\circ}$ and $40^{\circ}$, on the power requirement of rotary tillage. In this study, the revolutions of the rotary blade considered were 204, 243, 285, 360 rpm, and the forwarding speeds of the rotary system considered were 29.40cm/sec, 46.93em/sec. The power requirements of rotary blade were measured by a dynamic strain gage systems at the soil bin which was filled with artificial soil. The results of the study were summarized as follows: 1. The response surface analysis showed that the revolution and forwarding speed of the rotary shaft had an interacting influence on the torque requirement of the rotary blade. The mathematical model developed by the above was repersented as follow. $$T=a_0+a_1V+a_2R +a_3VR+a_4VR^2$$ where, $a_0=constant$ $a_1,\;a_2,\;a_3,\;a_4=coefficients$ V=forwarding speed of the rotary system. (em/sec) R=revolution of the rotary shaft. (rpm) T=tilling torque requirement. (kg-m) 2. When the maximum tilling torque requirement was analyzed, ${\partial}T/{\partial}R$ was decreased with the increasing revolution of rotary shaft, while ${\partial}T/{\partial}V$ was increased, which was minimum at 200~220 rpm. When the forwarding speeds were increased, ${\partial}T/{\partial}R$ was decreased with increasing rate. 3. When the mean tilling torque requirement was analyzed, ${\partial}T/{\partial}V$ was constant at 320~360 rpm and ${\partial}T/{\partial}R$ was decreased with increasing rate along with the increasing revolution of rotary shaft. 4. When the mean tilling torgue requirement per unit volume of soil was analyzed, ${\partial}T/{\partial}V$ was minimum at 270~300 rpm. ${\partial}T/{\partial}R$ for the forwarding speeds of 29.40cm/sec and 46.93cm/sec was same as that for 280~290 rpm. 5. Increasing the edge curves of the rotary blades, the tilling torque requirement was increased. But other studies showed that the smaller the edge curve, the more straw could be wrapped on blades which resulted in increasing torque requirements. Therefore, the edge curve of rotary blade should be considered for the future study.

  • PDF

INFLUENCE OF IRRADIATION MODES ON THE MICROHARDNESS AND THE POLYMERIZATION CONTRACTION OF COMPOSITE RESIN POLYMERIZED WITH LED CURING UNIT (LED 광중합기의 조사 mode가 복합레진의 미세경도 및 수축응력에 미치는 영향)

  • Park, In-Ho;Oh, You-Hyang;Lee, Nan-Young;Lee, Chang-Seop;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.2
    • /
    • pp.312-320
    • /
    • 2005
  • The purpose of this study was to evaluate the polymerization contraction and the microhardness of compostie resin($Supreme^{(R)}$, Filtek $Flow^{(R)}$, 3M-ESPE, USA) according to irradiation modes of LED curing unit(Elipar $Freelight^{(R)}$, 3M-ESPE, USA). The strain guage method was used for determination of polymerization contraction. Sample were divided by 6 groups according to curing modes and filling method. Group A: $Supreme^{(R)}$, Filtek $Flow^{(R)}$ lining, 10seconds curing, Group B: $Supreme^{(R)}$, Filtek $Flow^{(R)}$ lining, 15seconds curing, Group C: $Supreme^{(R)}$, Filtek $Flow^{(R)}$ lining, 15seconds soft start curing, Group D: $Supreme^{(R)}$ only, 10seconds curing, Group E: $Supreme^{(R)}$ only, 15seconds curing, Group F: $Supreme^{(R)}$ only, 15seconds soft start curing. Preparations of acrylic molds were followed by filling and curing. Strain guage attached to each sample were connected to a strainmeter. Measurements were recorded at each second for the total of 10 minutes including the periods of light application. And microhardness of each group after 24hours from light irradiation were measured. Obtained data were analyzed statistically using Repeated measures ANOVA and Tukey test. The results of the present study are as follows: 1. In flowable resin liner group, soft start curing group was not found decrease of polymerization contraction. But, In Supreme only filling group, the lowest polymeriation contraction was found in soft start curing group. 2. 10 seconds curing group showed statistically significant reduction of polymerization contraction compared with 15 seconds curing group(p<0.05). 3. The microhardness values of each group not revealed significant difference(p>0.05). But, lower surface microhardness was not reached 80% of upper surface microhardness.

  • PDF

Development of an ECC(Engineered Cementitious Composite) Designed with Ground Granulated Blast Furnace Slag (고로슬래그미분말이 혼입된 ECC(Engineered Cementitious Composite)의 개발)

  • Kim, Yun-Yong;Kim, Jeong-Su;Ha, Gee-Joo;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.21-28
    • /
    • 2006
  • This paper presents both experimental and analytical studies for the development of an ECC(Engineered Cementitious Composites) using ground granulated blast furnace slag(slag). This material has been focused on achieving moderately high composite strength while maintaining high ductility, represented by strain-hardening behavior in uniaxial tension. In the material development, micromechanics was adopted to properly select optimized range of the composition based on steady-state cracking theory and experimental studies on matrix, and interfacial properties. A single fiber pullout test and a wedge splitting test were employed to measure the bond properties of the fiber in a matrix and the fracture toughness of mortar matrix. The addition of the slag resulted in slight increases in the frictional bond strength and the fracture toughness. Subsequent direct tensile tests demonstrate that the fiber reinforced mortar exhibited high ductile uniaxial tension behavior with a maximum strain capacity of 3.6%. Both ductility and tensile strength(~5.3 MPa) of the composite produced with slag were measured to be significantly higher than those of the composite without slag. The slag particles contribute to improving matrix strength and fiber dispersion, which is incorporated with enhanced workability attributed to the oxidized grain surface. This result suggests that, within the limited slag dosage employed in the present study, the contribution of slag particles to the workability overwhelms the side-effect of decreased potential of saturated multiple cracking.

Strain Improvement and Bioprocess Optimization for Enhanced Production of Haluronic Acid(HA) in Bioreactor Cultures of Streptococcus zooepidemicus (히알루론산 생산성 향상을 위한 Streptococcus zooepidemicus 균주 개량 및 발효조 배양공정 최적화)

  • Kim, Soo Yeon;Chun, Gie-Taek
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.344-357
    • /
    • 2020
  • Strain improvement and bioprocess development were undertaken to enhance hyaluronic acid(HA) production by Streptococcus zooepidemicus cells. Using a high-yielding mutant strain, statistical medium optimization was carried out in shake flask cultures, resulting in 52% increase in HA production (5.38 g/l) at the optimal medium composition relative to the parallel control cultures. For sufficient supply of dissolved oxygen (DO), which turned out to be crucial for enhanced production of HA, agitation system and speed were intensively investigated in 5 L bioreactor cultures. Increase in oxygen mass transfer coefficient (kLa) through increment of agitation speed (rpm) and 35% expansion of diameter of the newly-designed impellers showed significantly positive effects on HA production. By installing an expanded Rushton-turbine impeller for efficient break-down of sparged air, and an extended marine impeller above the Rushton-turbine impeller for efficient mixing of the air-born viscous fermentation broth, maximum amount of HA (9.79 g/l) was obtained at 450 rpm, 1.8 times higher level than that of the corresponding flask culture. Subsequently, the possibility of bioprocess scale-up to a 50 L bioreactor was investigated. Despite almost identical maximum HA production (9.11 vs 9.25 g/l), the average HA volumetric productivity (rp) of the 50 L culture turned out only 74% compared to the corresponding 5 L culture during the exponential phase, possibly caused by shear damages imposed on the producing cells at the high stirring in the 50 L culture. The scale-up process could be successfully achieved if a scale-up criterion of constant oxygen mass transfer coefficient (kLa) is applied to the 50 L pilot-scale bioreactor system.

Suppressive Mechanism of Soil-borne Disease Development and its Practical Application -Isolation and Identification of Species of Trichoderma Antagonistic to Soil diseases and its activities in the Rhizosphere- (토양병의 발병억제 기작과 그 실용성 -길항성 Trichoderma spp.의 분리, 동정 및 근권내 활동-)

  • Kim, S.I.;Shim, J.O.;Shin, H.S.;Choi, H.J.;Lee, M.W.
    • The Korean Journal of Mycology
    • /
    • v.20 no.4
    • /
    • pp.337-346
    • /
    • 1992
  • Trichoderma spp. are an effective control agent for damping-off or other plant diseases. The interaction between. T. hamatum and Rhizoctonia solani on the rhizosphere or surface soil were examined to assess the possible roles of antibiosis or competition in the mechanisms of biological control agents as a basic research. In a proportional comparison, total bacteria, fungi, actinomycetes and Trichoderma spp were 65%, 8.8%, 25.9% and 0.28% respectively in their distribution in the soil. Among Trichoderma spp isolated, the 5 species of Trichoderma spp were indentified as T. koninggii, T. pseudokoninggii, T. aureoviridi, T. hamatum and T. viride respectively. In a mycoparasitic test, one isolate of T. hamatum strain Tr-5 showed an enzymatic ability to break fungal hyphae into piecies and infected on the R. solani hyphae showing a parasitism. Spore germination of the all isolates of Trichoderma spp showed a 1.7-7.3% of germination in natural soil conditions, but the percentage was high in sterile soil indicating all the natural soil were fungistatic on conidia of Trichoderma spp. In rhizosphere competent assay in pea plant, the antagonistic T. hamatum, T. viride, T. koninggii, T. pseudokoninggii showed a colonizing upper soil depth in rhizosphere around 1-3 cm in root zone, but the colonizing ability was much reduced along the deeper the soil depth. Propagule density was decreased in deeper the soil layer. Disease development rate treated alone with plant pathogens, Fusarium solani, Rhizoctonia solani, Cylindrocarpon destructans increased, but disease incidence rate reduced in treatment with combinations with antagonistic T. hamatum strain Tr-5.

  • PDF

Tolerance of Korean Cronobacter spp. (Enterobacter sakazakii) Isolates to Dessication (국내에서 분리한 Cronobacter spp.(Enterobacter sakazakii)의 건조내성 특성)

  • Lee, Eun-Jin;Ryu, Tae-Hwa;Park, Jong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.681-686
    • /
    • 2009
  • Cronobacter spp. (Enterobacter sakazakii) is known to be highly resistant to dry conditions than any other Enterobacteriaeae. In this study, one hundred and ten Korean Cronobacter isolates were characterized to find out their survival characteristics under conditions of desiccation and humidity. Thirty percentage strains of the isolates showed high resistance to desiccation exposed on the metal surface for eight hours by half survival of the initial number, whileas less than 10% strains showed dry sensitivity by less one log scale survival among seven log scales. Finally, more than 90% of the strains consisted of dry-resistant and dry-intermediate groups. The same tendencies were evident in a 15-day exposure. Dry-resistant and intermediate strain groups showed 3 log scale survival among 5 log initial numbers in the powdered infant formula for 30 days, which were more resistant than on the above metal surface exposed. So, almost the isolate strains showed high resistance to dry condition. Dry-resistant and intermediate groups exposed on the metal surface formed a biofilm at the beginning, and the dry-sensitive group showed biofilm formation mainly only after a 7-day exposure. However, without a time difference in formation of biofilm, the dry-resistant and sensitive isolates seemed to similar biofilm formation activity. Most of the isolates showed very low survival at 75% relative humidity in 48 hours; however, they showed high resistance by 60% survival at 40% relative humidity. The Cronobacter isolates showed high resistance to desiccation on the metal surface and in the powdered infant formula, but low survival at high relative humidity. Therefore, high humidity may be a control method for Cronobacter in food processing environments.