• Title/Summary/Keyword: Surface soil

Search Result 3,673, Processing Time 0.033 seconds

Analysis of the Factors Influencing the Mesopore Ratio on the Soil Surface to Investigate the Site Factors in a Forest Stand(I) - With a Special Reference to Coniferous Stands - (산림(山林)의 입지환경인자(立地環境因子)가 표층토양(表層土壤)의 조공극률(粗孔極律)에 미치는 영향인자(影響因子) 분석(分析)(I) - 침엽수림(針葉樹林)을 중심(中心)으로 -)

  • Jeong, Yongho;Park, Jae Hyeon;Kim, Kyong Ha;Youn, Ho Joong
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.3
    • /
    • pp.314-323
    • /
    • 2001
  • This study aimed to clarify the influencing factors of mesopore ratio on a pore geometry of surface soil in coniferous stands as an index of the water retention capacity. Twenty three factors including site conditions and soil properties were analyzed by spss/pc + for the data collected during March to October of 1993. The factors influencing the mesopore ratio(pF2.7) on the surface soil were as follows; macropore ratio(pF1.6), slope, crown-cover rates, thickness of F layer, organic matter contents, and the growing stock. And influencing factor on the ratio of mesopore in the soil surface was correlated with percentage of amount of clay, soil surface, A and B horizon soil hardness shows high negative significance. Also, multiple regression equations for mesopore ratios of surface soil and surface soil hardness, clear length, growing stock, B horizon of soil hardness, organic matter contents show high significance($R^2$; 0.80). In coniferous stands, it is effective in promoting development on the ratio of mesopore that forest practice for enhancing of the water resource retention capacity should be carried out when the crown-cover rates of stands are more than 80 percentages.

  • PDF

Improvements to the Terrestrial Hydrologic Scheme in a Soil-Vegetation-Atmosphere Transfer Model (토양-식생-대기 이송모형내의 육지수문모의 개선)

  • Choi, Hyun-Il;Jee, Hong-Kee;Kim, Eung-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.529-534
    • /
    • 2009
  • Climate models, both global and regional, have increased in sophistication and are being run at increasingly higher resolutions. The Land Surface Models (LSMs) coupled to these climate models have evolved from simple bucket models to sophisticated Soil-Vegetation-Atmosphere Transfer (SVAT) schemes needed to support complex linkages and processes. However, some underpinnings of terrestrial hydrologic parameterizations so crucial in the predictions of surface water and energy fluxes cause model errors that often manifest as non-linear drifts in the dynamic response of land surface processes. This requires the improved parameterizations of key processes for the terrestrial hydrologic scheme to improve the model predictability in surface water and energy fluxes. The Common Land Model (CLM), one of state-of-the-art LSMs, is the land component of the Community Climate System Model (CCSM). However, CLM also has energy and water biases resulting from deficiencies in some parameterizations related to hydrological processes. This research presents the implementation of a selected set of parameterizations and their effects on the runoff prediction. The modifications consist of new parameterizations for soil hydraulic conductivity, water table depth, frozen soil, soil water availability, and topographically controlled baseflow. The results from a set of offline simulations are compared with observed data to assess the performance of the new model. It is expected that the advanced terrestrial hydrologic scheme coupled to the current CLM can improve model predictability for better prediction of runoff that has a large impact on the surface water and energy balance crucial to climate variability and change studies.

  • PDF

Evaluation of Field Applicability of Slope of Improved Soil for Ground Stabilizer (지반안정재 개량토의 토사 비탈면 현장 적용성 평가)

  • Lee, Kang-Il;Park, Seong-Bak;Choi, Min-Ju
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.1
    • /
    • pp.35-44
    • /
    • 2021
  • This research studies the stabilization method for improved soil sloped through the on-site application of Paper Flyash ground stabilizers. The target strength required for improved soil is 500 kPa, and the compressive strength for the slope surface needs to be less than 1,000 kPa after the improvement in order to plant vegetation. To meet this condition, we mixed soil from the site and the ground stabilization material, which is the main material for surface improvement material, performed mixing design and conducted various tests including strength test, permeability test and plantation test. After analyzing the results of the compression test on improved soil slope, we proposed soil constants for the improved soil. In order to evaluate the applicability of the improved soil on the slope, the site construction was carried out on the collapsed slope and the reinforcement evaluation of the surface of the improvement soil was conducted. The stability was not secured before the reinforcement, but the test shows after the reinforcement with improved soil, the safety rate is secured up to 48 hours during the raining period. In addition, the compressive strength of the improved soil at the site was secured at more than 200 kPa adhesion as planned, and the soil hardness test result was also found to be within the specified value of 18-23 mm, which increased the resistance to rainfall and ability to grow plant on the surface for improved soil.

A Study on the Restoration on the Strip Roads Mt. Baekun Area (백운산 지역에서 벌채지내 운재로의 회복에 관한 연구)

  • Park, Jae-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.2
    • /
    • pp.34-43
    • /
    • 2007
  • To investigate the restoration procedure on soil physical properties and vegetation at the surface of strip road affected by timber harvesting operation. This study was carried out at strip roads constructed between 1989 and 1994 in Mt. Baekun, Kwangyang, Chollanam-Do. Soil hardness of the surface layer was improved with change of time after strip road construction, but that of 7.6~15 cm depth from the surface was not improved. According to linear regression analysis, it was estimated 16.6 years in 0~7.5 cm and 16.9 years in 7.6~15 cm soil depth to be restored to natural forest lands. The amount of surface soil erosion was 0.045$m^3$/km/yr on strip roads constructed in 1989 and 1990, and road constructed in 1994 showed the highest value (4.5$m^3$/km/yr). Vegetation coverage rates of road surface were 96.7% in strip roads constructed in 1990. Those of cutslope and fillslope were highest in roads constructed in 1990. The results indicated that strip roads were restored with change of time after road construction.

Comparison of soil erosion simulation between empirical and physics-based models

  • Yeon, Min Ho;Kim, Seong Won;Jung, Sung Ho;Lee, Gi Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.172-172
    • /
    • 2020
  • In recent years, soil erosion has come to be regarded as an essential environmental problem in human life. Soil erosion causes various on- and off-site problems such as ecosystem destruction, decreased agricultural productivity, increased riverbed deposition, and deterioration of water quality in streams. To solve these problems caused by soil erosion, it is necessary to quantify where, when, how much soil erosion occurs. Empirical erosion models such as the Universal Soil Loss Equation (USLE) family models have been widely used to make spatially distributed soil erosion vulnerability maps. Even if the models detect vulnerable sites relatively well by utilizing big data related to climate, geography, geology, land use, etc. within study domains, they do not adequately describe the physical process of soil erosion on the ground surface caused by rainfall or overland flow. In other words, such models remain powerful tools to distinguish erosion-prone areas at the macro scale but physics-based models are necessary to better analyze soil erosion and deposition and eroded particle transport. In this study, the physics-based Surface Soil Erosion Model (SSEM) was upgraded based on field survey information to produce sediment yield at the watershed scale. The modified model (hereafter MoSE) adopted new algorithms on rainfall kinematic energy and surface flow transport capacity to simulate soil erosion more reliably. For model validation, we applied the model to the Doam dam watershed in Gangwon-do and compared the simulation results with the USLE outputs. The results showed that the revised physics-based soil erosion model provided more improved and reliable simulation results than the USLE in terms of the spatial distribution of soil erosion and deposition.

  • PDF

A Study on Rainfall-induced Erosion of Land Surface on Reinforced Slope Using Soil Improvement Material (지반 개량재에 의한 보강사면의 강우시 표면침식에 관한 연구)

  • Kim, You-Seong;Kim, Jae-Hong;Bhang, In-Hwang;Seo, Se-Gwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.49-59
    • /
    • 2013
  • Heavy rainfall intensity may cause shallow slope failures and debris flow by rill erosion and scour on land surface. The paper represents the difference between native soil (weathered soil) and reinforced soil, which is mixed by hardening agent with flyash as main material, for investigating experimental findings of rill erosion and erosion. Results obtained from artificial rainfall simulator show that erosion rate of reinforced soil mixed with hardening agent is reduced by 20% because an amount of eroded soil on slope surface is inversely proportional to the increase of soil strength. For example, rainfall of 45mm (at the elapsed time of 25mins in rainfall intensity of 110mm/hr) triggers rill erosion on native soil surface, but the rill erosion on reinforced soil surface does not even occur at 330mm rainfall (at the elapsed time of 3hrs in rainfall intensity of 110mm/hr). As a result of slope stability analysis, it was found that the construction method for reinforced soil surface would be more economical, easy and fast construction technology than conventional reinforcement method.

Reducing the Effect of Ammonia Emissions from Paddy and Upland Soil with Deep Placement of Nitrogen Fertilizers (질소비료의 심층시비에 의한 논과 밭 토양의 암모니아 배출 억제 효과)

  • Sung-Chang Hong;Min-Wook Kim;Jin-Ho Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.230-235
    • /
    • 2022
  • BACKGROUND: Ammonia gas emitted from nitrogen fertilizers applied in agricultural land is an environmental pollutant that catalyzes the formation of fine particulate matter (PM2.5). A significant portion (12-18%) of nitrogen fertilizer input for crop cultivation is emitted to the atmosphere as ammonia gas, a loss form of nitrogen fertilizer in agricultural land. The widely practiced method for fertilizer use in agricultural fields involves spraying the fertilizers on the surface of farmlands and mixing those with the soils through such means as rotary work. To test the potential reduction of ammonia emission by nitrogen fertilizers from the soil surface, we have added N, P, and K at 2 g each to the glass greenhouse soil, and the ammonia emission was analyzed. METHODS AND RESULTS: The treatment consisted of non-fertilization, surface spray (conventional fertilization), and soil depth spray at 10, 15, 20, 25, and 30 cm. Ammonia was collected using a self-manufactured vertical wind tunnel chamber, and it was quantified by the indophenol-blue method. As a result of analyzing ammonia emission after fertilizer treatments by soil depth, ammonia was emitted by the surface spray treatment immediately after spraying the fertilizer in the paddy soil, with no ammonia emission occurring at a soil depth of 10 cm to 30 cm. In the upland soil, ammonia was emitted by the surface spray treatment after 2 days of treatment, and there was no ammonia emission at a soil depth of 15 cm to 30 cm. Lettuce and Chinese cabbage treated with fertilizer at depths of 20 cm and 30 cm showed increases of fresh weight and nutrient and potassium contents. CONCLUSION(S): In conclusion, rather than the current fertilization method of spraying and mixing the fertilizers on the soil surface, deep placement of the nitrogen fertilizer in the soil at 10 cm or more in paddy fields and 15 cm or more in upland fields was considered as a better fertilization method to reduce ammonia emission.

농경지 토양에서 N과 P의 거동 특성

  • 최태범;장윤영;이기철
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.451-454
    • /
    • 2003
  • Nonpoint source pollution of groundwater and subsurface water from irrigated agriculture is a major concern in many areas. In this study we aimed to investigate the effect of the water applied by irrigation in agricultural area on the transport of nitrogen and phosphorus originated from fertilizers applied to the surface of soil in agricultural activities. We first conducted investigation on the resdual concentrations of soil N and P in a selected agricultural area. And simulating the target area by column studies in the laboratory leaching extent of various components from the composite and urea fertilizers applied on the soil surface during irrigation was studied. Infiltration of water enhanced the leaching of nitrogen and phosphorus in both the rice paddy field soil and the patch soil. The downward N and P transport with infiltrating water was more pronounced in the patch soil column and the increased residual concentrations of N and P in the lower sections in the patch soil column was found with time.

  • PDF

Effects of Ground Improvement Depending on the Type of Soil by Compaction Grouting System (토질의 종류에 따른 CGS공법의 지반개량효과에 관한 연구)

  • Chun, Byung-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.211-220
    • /
    • 2002
  • CGS(Compaction Grouting System) is widely used in reinforcement of structural foundation and ground improvement in soft ground. But the effects of ground improvement depending on the type of soil must be studied in order to adopt in various soils (granular soil and cohesive soil). In this study, characteristics of ground improvement (the increase of N value, increase in unit weight, vertical displacement on the ground surface) by CGS method was compared through two cases that were performed in granular and cohesive soil. The results show that the closer to the grout hole, the more increase in N value and this trend appear distinctly in granular soil. Unit weight of ground increase largely near by the grout hole and decrease in far from it independently of the soil type. The vertical displacement on the ground surface appeared in smaller area in case of granular soil than cohesive soil.

Ecological Role of Earthworms in Red Pine Forest in the Limestone Areas (석회암지역 소나무림에서 지렁이의 생태학적 역할)

  • Mun, Hyeong-Tae;Jeong-Ok In
    • The Korean Journal of Ecology
    • /
    • v.16 no.2
    • /
    • pp.229-238
    • /
    • 1993
  • Ecological role of earthworms in red pine forest was investigated with emphasis on the population size, cast production and changes of physicoKDICical properties of soil by earthworm's activities. The density of earthworms was 62.8/m2 in August, 1992. Average biomass of earthworms was 16.3 g/m2. N and P concentrations in the tissue of earthworms were 28.5 mgN/g and 0.5 mgP/g, respectively. Cast production continued from April to November, with a peak in August. Annual production of earthworm casts was 5,379 g/m2. Bulk density of surface soil decreased due to the earthworm's cast-forming activity. Clay fraction in surface soil increased by addition of casts. Soil KDICical properties were significantly different between the surface soil and the earthworm casts. The amounts of organic matter, N, P, K, Ca and Mg added to the soil via earthworm casts during one year were 9.3t/ha, 11.29 kg/ha, 0.78 kg/ha, 12.36 kg/ha, 140.29 kg/ha and 20.96 kg/ha, respectively. Earthworms can feed on waxy and resinous litter when it became palatable by decomposing processes.

  • PDF