• Title/Summary/Keyword: Surface sizing

Search Result 142, Processing Time 0.029 seconds

Surrogate Model Based Approximate Optimization of Passive Type Deck Support Frame for Offshore Plant Float-over Installation

  • Lee, Dong Jun;Song, Chang Yong;Lee, Kangsu
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.131-140
    • /
    • 2021
  • The paper deals with comparative study of various surrogate models based approximate optimization in the structural design of the passive type deck support frame under design load conditions. The passive type deck support frame was devised to facilitate both transportation and installation of 20,000 ton class topside. Structural analysis was performed using the finite element method to evaluate the strength performance of the passive type deck support frame in its initial design stage. In the structural analysis, the strength performances were evaluated for various design load conditions. The optimum design problem based on surrogate model was formulated such that thickness sizing variables of main structure members were determined by minimizing the weight of the passive type deck support frame subject to the strength performance constraints. The surrogate models used in the approximate optimization were response surface method, Kriging model, and Chebyshev orthogonal polynomials. In the context of numerical performances, the solution results from approximate optimization were compared to actual non-approximate optimization. The response surface method among the surrogate models used in the approximate optimization showed the most appropriate optimum design results for the structure design of the passive type deck support frame.

Fabrication of Fiber-Reinforced Composites by High Pressure Self-Combustion Sintering Method (고압 자전연소 소결법을 이용한 섬유강화 복합체의 제조)

  • 방환철;고철호;임동원;김봉섭;최태현;윤존도
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.444-452
    • /
    • 2000
  • Dense composites of titanium matrix and Al2O3 matrix with reinforcements of carbon or titanium carbide fibers were successfully fabricated by high-pressure self-combustion sintering method or combustion reacton under 30 MPa of uniaxial pressure with an aid of external heating in vaccum. It was found that the fibers were uniformly distributed in the matrix, and aligned in a phase perpendicular to the pressure axis. As a moel ratio of Ti/C or reaction time increased, the density of Ti-matrix composite increased Micro pores around fibers could be removed by using clean carbon fibers without sizing agent on their surface. The evolution of carbide fibers from carbon fibers was observed. The composition of the various phases around fibers were analyzed.

  • PDF

Effect of Cooling Rate on Mechanical Properties of Carbon/Nylon66 Composites (카본/나일론 복합재료의 냉각속도에 따른 기계적 특성변화)

  • 홍순곤;변준형;황병선;강범수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.122-125
    • /
    • 2001
  • The objective of this research is to develop hybridized yarns for thermoplastic composites, and to examine tile effect of cooling rate on mechanical properties of the composites. The co-braided yarn utilizing carbon fibers as reinforcements and Nylon 66 fibers as matrix materials has been fabricated. Thermoplastic composites have been manufactured by the hot-press forming process. For the processing conditions, cooling rates of $-2.5^{\circ}C$/min and $-60^{\circ}C$/min have been considered. Three-point bending test and losipescu shear test were performed to investigate the effect of the cooling rate and the surface treatment of carbon fibers. SEM photographs were used to investigate the fracture surfaces of the tested samples. The cooling rate of $-60^{\circ}C$/min resulted in the higher strength and elastic modulus for bending and shear tests. The composites of the epoxy-sized carbon fibers showed the lowest strength due to the degradation of the sizing material during the thermoforming process.

  • PDF

Effect of fiber-matrix adhesion on the fracture behavior of a carbon fiber reinforced thermoplastic-modified epoxy matrix

  • Carrillo-Escalante, H.J.;Alvarez-Castillo, A.;Valadez-Gonzalez, A.;Herrera-Franco, P. J.
    • Carbon letters
    • /
    • v.19
    • /
    • pp.47-56
    • /
    • 2016
  • In this study, the fracture behavior of a thermoplastic-modified epoxy resin reinforced with continuous carbon fibers for two levels of fiber-matrix adhesion was performed. A carbon fiber with commercial sizing was used and also treated with a known silane, (3-glycidoxy propyl trimethoxysilane) coupling agent. Toughness was determined using the double cantilever test, together with surface analysis after failure using scanning electron microscope. The presence of polysulfone particles improved the fracture behavior of the composite, but fiber-matrix adhesion seemed to play a very important role in the performance of the composite material. There appeared to be a synergy between the matrix modifier and the fiber-matrix adhesion coupling agent.

Machining Analysis of the Autofrettaged Compound Cylinder (자긴가공된 복합실린더의 기계가공해석)

  • Park, Jae-Hyun;Kim, Jae-Hoon;Cha, Ki-Up;Hong, Suk-Kyun;Lee, Young-Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.800-807
    • /
    • 2007
  • Autofrettage process is used for internal forming and sizing of cylinder designed to withstand high internal pressures. Once the tube is autofrettaged, it needs to be machined to its final dimensions both at the bore and its outer surface. This paper presents an analytical analysis and numerical analysis of machined compound cylinder using finite element code, ANSYS10.0. An analytical model for predicting the level of autofrettage following either inner, outer, or combined machining of the compound cylinder is developed for the autofrettage residual stress field is simulated by an autofrettaged pressure. The autofrettaged pressures are obtained by using trying-error method. As autofrettage percentage is 20 % and 40 %, the numerical results are found to be in almost agreement with the analytical ones. However, as autofrettage percentage is 60 %, the numerical results have a little difference with the analytical ones.

Trends in papermaking minerals used in the Asia-Pacific region

  • Lines, M.G.;Park, S.B.
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2004.04a
    • /
    • pp.56-65
    • /
    • 2004
  • The Asia Pacific papermaking giants are China, Japan and Korea followed by Indonesia. The strong trends in recent years have been the move to alkaline/neutral sizing which has assisted the move from kaolin and talc as the major filler minerals to ground calcium carbonate and precipitated calcium carbonate. Kaolin remains important as a constituent in many coating formulations and Chinese-sourced talc, due to its brightness and price will remain important especially in paper filler minerals. The need for ever increasing printing surface quality and continuing efforts by the paper manufacturers to keep costs under control will ensure minerals in papermaking will continue to be a dynamic subject in the years ahead.

  • PDF

Effect of Sizing Agent on the Enzymatic Finishing of Tencel Fabric by Cellulase (셀룰라아제에 의한 텐셀직물의 가공에 있어서 호제의 영향)

  • 최창남;황태연;고봉국;박원규;변수진;이웅의;정상귀;조성용
    • Textile Coloration and Finishing
    • /
    • v.15 no.1
    • /
    • pp.8-14
    • /
    • 2003
  • The effect of pasting agent on the defibrillation of Tencel fabric was investigated. It was evaluated by the weigth loss of fabric when the fabric was treated with cellulase containing various kinds of pasting agents. The surface appearance of Tencel fabric was checked by SEM. Under the treatment condition without pasting agent, the weight loss of fabric was high at pH 5.0 and $60^\circ{C}$. This means that the cellulase activity was high at this condition. By increasing the concentration of carboxymethyl cellulose(CMC), the weight loss of fabric was decreased monotonously. This tendency was not appeared in other pasting agents. CMC is synthesized by the reaction of chloroacetic acid and cellulose. The glucose units may be remained after the reaction. So, it was considered that the degradation of glucose unit in Tencel was decreased, because cellulase had to attack both Tencel and CMC.

Machining effect of the Autofrettaged Compound Cylinder (자긴가공된 이중실린더의 기계가공효과)

  • Park, Jae-Hyun;Lee, Young-Shin;Kim, Jae-Hoon;Kong, Jeong-Pyo;Cha, Ki-Up
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.620-625
    • /
    • 2007
  • Autofrettage process is used for internal forming and sizing of cylinder designed to withstand high internal pressures. Once the tube is autofrettaged, it needs to be machined to its final dimensions both at the bore and its outer surface. This paper presents an analytical analysis and numerical analysis of machined compound cylinder using finite element code, ANSYS10.0. An analytical model for predicting the level of autofrettage following either inner, outer, or combined machining of the compound cylinder is developed for the autofrettage residual stress field is simulated by an autofrettaged pressure. The autofrettaged pressures are obtained by using trying-error method. As autofrettage percentage is 20 %, the numerical results are found to be in almost agreement with the analytical ones. However, as autofrettage percentage is 60 %, the numerical results have a little difference with the analytical ones.

  • PDF

A Size Evaluation for Continuous Flaw Monitoring Using the Tip Diffraction Method (초음파(超音波)의 Tip Diffraction 방법(方法)을 이용한 결함연속감시(缺陷連續監視)를 위한 크기 평가(評價))

  • Jung, H.K.;Cho, C.K.;Kim, B.C.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.7 no.1
    • /
    • pp.42-50
    • /
    • 1987
  • Most of significant defects in the pressure boundaries of nuclear power plant we re dispositioned to be monitored periodically every inservice inspection. Due to the difficulty of the defect sizing during operation, it is necessary to develope the continuous flaw monitoring techniques. The Tip Diffraction method, specifically speaking, spot seems to be suitable for flaw monitoring. The optimum conditions of selecting the transducer were 3.5 MHz and 45-57 degree according to compatibility with the defect height. The effective calculation of the defect height was to assume the fact that the incident beam is parallel. This method would be supplemented to ASME method about the defect characterization for the surface flaw.

  • PDF

Drag reduction of a circular cylinder at subcritical flow regime using base shield plates

  • El-Khairy, Nabil A.H.
    • Wind and Structures
    • /
    • v.6 no.5
    • /
    • pp.347-356
    • /
    • 2003
  • Experimental studies on drag reduction of a circular cylinder of diameter D were conducted in the subcritical flow regime at Reynolds numbers in the range $4{\times}10^4{\leq}Re{\leq}10^5$. To shield the cylinder rear surface from the pressure deficit of the unsteady vortex generation in the near wake, two shield plates were attached downstream of the separation points to form a cavity at the base region. The chord of the shield plates, L, ranged from 0.22 to 1.52 D and the cavity width, G, was in the range from 0 to 0.96 D. It is concluded that significant drag reductions from that of a plain cylinder may be achieved by proper sizing of the shield plates and the base cavity. The study shows that using a pair of shield plates at G/D of 0.86 and angular position ${\theta}$ of ${\pm}121^{\circ}$ results in a configuration with percentage drag reduction of 40% for L/D of 0.5, and 55% for L/D of 1.0.