• Title/Summary/Keyword: Surface ship

Search Result 1,002, Processing Time 0.029 seconds

On the non-linearities of ship's restoring and the Froude-Krylov wave load part

  • Matusiak, Jerzy Edward
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.111-115
    • /
    • 2011
  • When formulating a general, non-linear mathematical model of ship dynamics in waves the hydrostatic forces and moments along with the Froude-Krylov part of wave load are usually concerned. Normally radiation and the diffraction forces are regarded as linear ones. The paper discusses briefly few approaches, which can be used in this respect. The concerned models attempt to model the non-linearities of the surface waves; both regular and the irregular ones, and the nonlinearities of the restoring forces and moments. The approach selected in the Laidyn method, which is meant for the evaluation of large amplitude motions in the 6 degrees-of-freedom, is presented in a bigger detail. The workability of the method is illustrated with the simulation of ship motions in irregular stern quartering waves.

Development of Numerical Tool for the DNS/LES of Turbulent Flow for Frictional Drag Reduction (마찰저항감소를 위한 난류유동의 DNS/LES 해석기술의 개발)

  • ;;Osama A. El-Samni
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.1
    • /
    • pp.47-54
    • /
    • 2004
  • The friction drag reduction of a ship is of prime importance for the design and production of high-valued/high-tech ship. Thus, this study carried out the development of reliable numerical tools to identify the friction drag reduction mechanism for turbulent boundary layer on the ship surface and to deduce the optimum reduction technique by numerical experiment. The developed LES and DNS numerical tools were applied to simulate the turbulent channel flow These results were very well matched with previous results not only qualitatively but also quantitatively. The parallelization using MPI (Message Passing Interface) technique implemented in the developed code to speed up the simulation and to obtain the accurate results from the fine grid system was testified its computational efficiency.

A Study on the Stability of a Low Freeboard Coastwise Tanker Capsized in Turning (2) - Experimental Examination of the Outward Heel Moment Induced by Flooding of Seawater onto the Deck - (선회중 전복한 저건현 내항 탱커의 복원성에 관한 연구 (2) - 갑판상 해수 침입이 경사 모멘트에 미치는 영향에 대한 실험적 조사 -)

  • 김철승;공길영;김순갑
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.03a
    • /
    • pp.145-153
    • /
    • 2002
  • A coastwise chemical tanker sailing at full speed has capsized in calm water and whole turing. In the precious paper, we investigated reasons of the accident by demonstrating the proper correction for the free surface effect of the liquid cargo and the bow-sinkage effect. In this paper, we also carry out model experiments of a transverse pressure under the seawater and an outward heel moment according to the heel angle and rudder angle, on the basis of radius of turning circle, ship's speed and drift angle of model ship occurring in turning. It is also shown that the flooding of seawater onto the deck occurring in turning generated a significant outward heel moment and the vertical distance between the center of gravity of the ship and the renter of lateral water drag.

  • PDF

Computation of Flow around a Container Ship with Twin-Skegs using the CFD (CFD를 이용한 쌍축 컨테이너선 주위의 유동계산)

  • Kim, Hee-Taek;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.4
    • /
    • pp.370-378
    • /
    • 2007
  • In this study. a numerical analysis has been performed for the turbulent flow around a 15,000TEU twin-skeg container ship using a commercial CFD code. FLUENT. The computed results have been compared with the model test data from MOERI. We investigated viscous resistance coefficient. wake distribution and characteristics of the shear flow according to the grid numbers. Although the free surface is approximated by the plane of symmetry in this work. the calculated axial velocity and transverse vector show a good agreement with the MOERI experimental data except for the region of 0.9 level of axial velocity at the propeller plane. The numerical analysis show that commercial CFD code is useful tool for the evaluation of complex hull form with twin-skegs.

Application of fin system to reduce pitch motion

  • Reguram, B. Rajesh;Surendran, S.;Lee, Seung Keon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.409-421
    • /
    • 2016
  • Container ships are prone to move at a greater speed compared to other merchant ships. The slenderness of the hull of container vessel is for better speed, but it leads to unfavorable motions. The pitch and roll are related and sometimes the vessel might be forced to parametric roll condition which is very dangerous. A fin attached to the ship hull proves to be more efficient in controlling the pitch. The fin is fitted at a lowest possible location of the hull surface and it is at the bow part of the ship. Simulations are done using proven software package ANSYS AQWA and the results are compared. Simulations are done for both regular and irregular seas and the effect of fin on ship motion is studied. P-M spectrum is considered for various sea states.

Experimental Analysis on the Motion Response of a Container Ship in Irregular Head Waves (콘테이너선의 불규칙파 중 운동응답에 대한 실험적 고찰)

  • S.Y.,Hong;S.M.,Lee;D.C.,Hong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.2
    • /
    • pp.36-46
    • /
    • 1987
  • This paper presents the results of seakeeping tests in a container ship model in irregular head waves. A time domain signal generating procedure is devised so that the wave maker behaves in accordance with the specified wave spectrum. The surface elevation of generated waves is measured and analysed to render the recorded wave spectrum for comparison with the specified one. Correction is made to the time domain signal until the differences between the two spectra become negligible. The motion responses and vertical acceleration of the self-propelled ship model are measured and analysed by both the spectral and the double amplitude methods. The two methods give nearly same statistical values. Finally the recorded spectra are compared with those calculated from the frequency domain motion analysis to show the credibility of the experimental results.

  • PDF

Hull-form optimization of a container ship based on bell-shaped modification function

  • Choi, Hee Jong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.478-489
    • /
    • 2015
  • In the present study, a hydrodynamic hull-form optimization algorithm for a container ship was presented in terms of the minimum wave-making resistance. Bell-shaped modification functions were developed to modify the original hull-form and a sequential quadratic programming algorithm was used as an optimizer. The wave-making resistance as an objective function was obtained by the Rankine source panel method in which non-linear free surface conditions and the trim and sinkage of the ship were fully taken into account. Numerical computation was performed to investigate the validity and effectiveness of the proposed hull-form modification algorithm for the container carrier. The computational results were validated by comparing them with the experimental data.

Comparison of potential and viscous methods for the nonlinear ship wave problem

  • Kim, Jin;Kim, Kwang-Soo;Kim, Yoo-Chul;Van, Suak-Ho;Kim, Hyo-Chul
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.159-173
    • /
    • 2011
  • The two different numerical approaches for solving the nonlinear ship wave problem are discussed in the present paper. One is based on a panel method, which neglects the viscous effects. The other is based on a finite volume method, which take into account the viscous effects by solving RANS equations. Focus is laid upon on the advantages and disadvantages of two methods. The developed methods are applied to calculating the flow around Series 60 hull to validate the performance of the present nonlinear methods. Although the two methods employ quite different numerical approaches, the calculated wave patterns from both methods show good agreements with the experiments. However the potential method simu-lates the global wave pattern accurately, while the viscous method shows better performance for the local wave prediction near a ship.

Design and development of accident response support service for safe operation of MASS (자율운항선박의 안전운항을 위한 사고대응 지원서비스 설계 및 개발)

  • Gyeungtae Nam;Younggeun Lee;Namsu Kim;Chunsu Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.441-442
    • /
    • 2022
  • This is a study on the design and operation software development of an accident response support service for MASS(maritime autonomous surface ship) that provides accident response support information according to ship accident classification when a ship accident occurs due to the operation of MASS

  • PDF

Analysis of the Minimum Distance of Small and Medium-Sized Fishing Vessels near Busan Port (어선 점용면적 기초 연구를 위한 부산항 중·소형 어선의 통항 이격거리 조사 및 분석)

  • Park, Hyungoo;Kim, Hyundong;Park, Young-soo;Kim, Dae-won;Park, Sangwon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.798-807
    • /
    • 2021
  • In the era of the fourth industrial revolution, Maritime Autonomous Surface Ship(MASS) are expected to emerge in the shipping industry. There has been much active research on collision avoidance systems regarding MASSs, but most of it has focused on merchant ships. A study of collision avoidance systems in fishing vessels is also essential, because Maritime Autonomous Surface Ships will encounter all type of vessels. In this study, the minimum passage distance between small-medium-sized fishing vessels and other vessels was investigated for the Ship's domain analysis. Based on the AIS data of Busan port and the adjacent area, the separation distances of fishing vessels were analyzed. The results indicated that as the speed of fishing vessels increased, the distance increased from 4L to 8L, and as length of the fishing vessels increased, the distance decreased from 10L to 6L. It is believed that the results of this study can be applied in the future to collision avoidance models for MASSs that reflect the domain of fishing vessels.