• Title/Summary/Keyword: Surface scratch test

Search Result 106, Processing Time 0.023 seconds

Effect of fluorine gas addition for improvement of surface wear property of DLC thin film deposited by using PECVD (PECVD를 이용한 DLC 박막의 표면 마모 특성 향상을 위한 플루오린 첨가의 영향)

  • Park, Hyun-Jun;Kim, Jun-Hyung;Moon, Kyoung-Il
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.357-364
    • /
    • 2021
  • In this study, DLC films deposited by PECVD were evaluated to the properties of super-hydrophobic by CF4 treatment. The structure of DLC films were confirmed by Raman Spectra whether or not mixed sp3 (like diamond) peak and sp2 (like graphite) peak. And the hydrogen contents in the DLC films (F-DLC) were measured by RBS analysis. In addition, DLC films were analyzed by scratch test for adhesion, nano-indentation for hardness and tribo-meter of Ball-on-disc type for friction coefficient. In the result of analysis, DLC films had traditional structure regardless of variation of hardness at constant conditions. Also adhesion of DLC film was increased as higher material hardness. Otherwise, friction coefficient was increased as lower material hardness. The DLC films were treated by CF4 plasma treatment to enhance the properties of super-hydrophobic. And the DLC films were measured by ESEM(Enviromental Scanning Electron Microscope) for water condensation.

Adhesion and Corrosion Resistance of Electrophoretic Paint on "Electroless" Paint Coated AZ31 Mg Alloy

  • Phuong, Nguyen Van;Kim, Donghuyn;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.6
    • /
    • pp.405-414
    • /
    • 2018
  • The present study investigated the adhesion and corrosion resistance of subsequent electrophoretic paint (E-paint) on "electroless" paint coated AZ31 Mg alloy, which was formed by immersion of AZ31 Mg alloy in E-painting solution. It was found that with increasing immersion time of AZ31 in E-painting solution, the amount of paint deposited by electroless process increased but it decreased the electrochemical equivalent of E-painting process and the adhesion of the subsequent E-paint layer. The E-paint on electroless paint coated AZ31 contained pores with the highest pore density and the largest pore size was obtained on the samples with electroless times of 2 and 5 minutes, respectively. Results of the salt-spray test showed an accelerated growth of blisters over the entire surface of the sample immersed for less than 5 minutes whereas blisters were observed only in the vicinity of the scratch in case of samples treated for 15 and 30 minutes. The E-paint on AZ31 with shorter electroless immersion time in E-painting solution was found to have good adhesion and better corrosion resistance.

Surface Characteristics of Polymer Coated NiTi Alloy Wire for Orthodontics (폴리머 코팅된 NiTi합금 교정선의 표면특성)

  • Cho, Joo-Young;Kim, Won-Gi;Choi, Hwan-Suk;Lee, Ho-Jong;Choe, Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.3
    • /
    • pp.132-141
    • /
    • 2010
  • NiTi alloy has been used for orthodontic wire due to good mechanical properties, such as elastic strength and frictional resistance, combined with a high resistance to corrosion. Recently, these wire were coated by polymer and ceramic materials for aesthetics. The purpose of this study was to investigate surface characteristics of polymer coated NiTi alloy wire for orthodontics using various instruments. Wires (round type and rectangular type) were used, respectively, for experiment. Polymer coating was carried out for wire. Specimen was investigated with field emission scanning electron microscopy(FE-SEM), energy dispersive x-ray spectroscopy(EDS) and atomic force microscopy(AFM). The phase transformation of non-coated NiTi wire from martensite to austenite occurred at the range of $14{\sim}15^{\circ}C$, in the case of coated wire, it occurred at the range of $16{\sim}18^{\circ}C$. Polymer coating on NiTi wire surface decreased the surface defects such as scratch which was formed at severe machined surface. From the AFM results, the average surface roughness of non-coated and coated NiTi wire was 13.1 nm, and 224.5 nm, respectively. From convetional surface roughness test, the average surface roughness of non-coated and coated NiTi wire was $0.046{\mu}m$, and $0.718{\mu}m$, respectively.

Effects of surface-roughness and -oxidation of REBCO conductor on turn-to-turn contact resistance

  • Y.S., Chae;H.M., Kim;Y.S., Yoon;T.W., Kim;J.H., Kim;S.H., Lee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.40-45
    • /
    • 2022
  • The electrical/thermal stabilities and magnetic field controllability of a no-insulation (NI) high-temperature superconducting magnet are characterized by contact resistance between turn-to-turn layers, and the contact resistance characteristics are determined by properties of conductor surface and winding tension. In order to accurately predict the electromagnetic characteristics of the NI coil in a design stage, it is necessary to control the contact resistance characteristics within the design target parameters. In this paper, the contact resistance and critical current characteristics of a rare-earth barium copper oxide (REBCO) conductor were measured to analyze the effects of surface treatment conditions (roughness and oxidation level) of the copper stabilizer layer in REBCO conductor. The test samples with different surface roughness and oxidation levels were fabricated and conductor surface analysis was performed using scanning electron microscope, alpha step surface profiler and energy dispersive X-ray spectroscopy. Moreover, the contact resistance and critical current characteristics of the samples were measured using the four-terminal method in a liquid nitrogen impregnated cooling environment. Compared with as-received REBCO conductor sample, the contact resistance values of the REBCO conductors, which were post-treated by the scratch and oxidation of the surface of the copper stabilizer layer, tended to increase, and the critical current values were decreased under certain roughness and oxidation conditions.

The electrochemical properties of PVD-grown WC-( $Ti_{1-x}$A $I_{x}$)N multiplayer films in a 3.5% NaCl solution

  • Ahn, S.H.;Yoo, J.H.;Kim, J.G.;Lee, H.Y.;Han, J.G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.435-444
    • /
    • 2001
  • WC-( $Ti_{1-x}$ A $l_{x}$) N coatings of constant changing Al concentration were deposited on S45C substrates by high-ionization sputtered PVD method. The Al concentration could be controlled by using evaporation source for Al and fixing the evaporation rate of the metals (i.e, WC- $Ti_{0.86}$A $l_{0.14}$N, WC- $Ti_{0.72}$A $l_{0.28}$N, and WC- $Ti_{0.58}$A $l_{0.42}$N). The corrosion behavior of WC-( $Ti_{1-x}$ A $l_{x}$)N coatings in a deaerated 3.5% NaCl solution was investigated by electrochemical corrosion tests and surface analyses. The measured galvanic corrosion currents between coating and substrate indicated that WC- $Ti_{0.72}$A $l_{0.28}$N coating showed the best resistance of the coating tested. The results of potentiodynamic polarization tests showed that the WC- $Ti_{0.72}$A $l_{0.28}$N coating deposited with 32W/c $m^2$ of Al target revealed higher corrosion resistance. This indicated that the WC- $Ti_{0.72}$A $l_{0.28}$N coating is effective in improving corrosion resistance. In EIS, the WC- $Ti_{0.72}$A $l_{0.28}$N coating showed one time constant loop and increased a polarization resistance of coating ( $R_{coat}$) relative to other samples. Compositional variations of WC-( $Ti_{1-x}$ A $l_{x}$)N coatings were analyzed by EDS and XRD analysis was performed to evaluate the crystal structure and compounds formation behavior. Surface morphologies of the films were observed using SEM and AFM. Scratch test was performed to measure film adhesion strength.strength. adhesion strength.strength.

  • PDF

Fabrication of LTCC Multi-layer Circuit Board made of Glass-Al2O3 Composites (Glass-Al2O3 복합소재를 원료로 한 LTCC 다층회로 기판의 제조)

  • Kwak, Hun;Jeon, Hyung-Do;Kim, Hwan;Lee, Won-Jae;Shin, Byoung-Chul;Kim, Il-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.509-516
    • /
    • 2008
  • Multi-layer circuit card for semiconductor inspection was fabricated by LTCC technology. After a proper impedance design without electrical interference, ceramic tapes with the composition of $CaO-Al_2O_3-SiO_2-B_2O_3$ glass and $Al_2O_3$ were prepared. The electrode with silver paste printed on the tape. Printed ceramic sheets were then laminated and sintered. Densities and dielectric properties were measured. The microstructure, fracture surface of the region of via and matching state of substrate-electrode were observed. The durability of plated outside electrode were examined by hardness and scratch test.

Finite Element Analysis of Nano Deformation for Hyper-fine Pattern Fabrication by Application of Nanoidentation Process (II) (나노인덴테이션 공정을 이용하여 극미세 패턴을 제작하기 위한 나노변형의 유한요소해석(II))

  • 이정우;윤성원;강충길
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.47-54
    • /
    • 2003
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation was studied with numerical method by ABAQUS S/W. Polymer (PMMA) and brittle materials (Si, Pyrex glass) were used as specimens, and forming conditions to reduce the elastic re cover and pile-up were proposed. The indenter was modeled a rigid surface. Minimum mesh sizes of specimens are 1 -l0nm. Comparison between the experimental data and numerical result demonstrated that the finite element approach is capable of reproducing the loading-unloading behavior of a nanoindentation test. The result of the investigation will be applied to the fabrication of the hyper-fine pattern.

Effects of Cu Addition on Microstructural and Mechanical Properties of Mo-Cu-N Coatings (Cu 첨가가 Mo-Cu-N 코팅의 미세구조와 기계적 특성에 미치는 영향)

  • Kim, Soobyn;Yoon, Hae-Won;Lee, Han-Chan;Moon, KyoungIl;Hong, Hyun Seon
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.4
    • /
    • pp.227-232
    • /
    • 2019
  • Mo-N based coatings have been studied for enhancing mechanical characteristics of thin films. In the case of Mo-X-N coatings, the microstructure and mechanical properties can be affected by the addition of the third element. In this work, Mo-Cu-N coatings were successfully fabricated with varying the Cu content from 4.5 at% to 31 at% by the co-sputtering method. Thus, properties of the coatings were analyzed by EDS, SEM, XRD, AFM, nano indentation and scratch test techniques. From observed results, MoxN bonds were made in a nitrogen atmosphere and Cu elements were present at grain boundaries. In addition, coatings with the Cu content above 14 at% had a Cu3N peak in the XRD results. Thus, it is suggested that the formation of Cu3N phase affected the microstructure and mechanical properties of Mo-Cu-N coatings. Mechanical properties of Mo-Cu-N coatings were found to be relatively better at Cu content of about 12 at%.

Effects of PbO on the Repassivation Kinetics of Alloy 690

  • Ahn, SeJin;Kwon, HyukSang;Lee, JaeHun;Park, YunWon;Kim, UhChul
    • Corrosion Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.131-139
    • /
    • 2004
  • Effects of PbO on the repassivation kinetics and characteristics of passive film of Alloy 690 were examined to elucidate the influences of PbO on the SCC resistance of that alloy. The repassivation kinetics of the alloy was analyzed in terms of the current density flowing from the scratch, i(t), as a function of the charge density that has flowed from the scratch, q(t). Repassivation on the scratched surface of the alloy occurred in two kinetically different processes; passive film initially nucleated and grew according to the place exchange model in which log i(t) is linearly proportional to q(t), and then grew according to the high field ion conduction model in which log i(t) is linearly proportional to 1/q(t) with a slope of cBV. The cBV is found to be a parameter representing repassivation rate and hence SCC susceptibility of the alloy. The lower the value of cBV, the faster the repassivation rate and the higher the SCC resistance of an alloy. Addition of PbO to pH 4 and 10 solutions increased the value of cBV of alloy 690, reflecting slower repassivation rate than without PbO. The change in the value of cBV was grater in pH 10 than in pH 4. The increase in SCC susceptibility of alloy 690 with the addition of PbO to solution was presumably due to the Cr-depletion in the outer parts of passive film of the alloy with an incorporation of Pb compounds in the film, which was revealed by Mott-Schottky, AES and XPS analyses.

Interface Shear Strength in Half Precast Concrete Slab (반두께 P.C. 슬래브의 면내전단내력에 관한 연구)

  • 이광수;김대근;최종수;신성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.4
    • /
    • pp.161-168
    • /
    • 1994
  • Half-P.C. slab system is the composite structural system which utilizes precast concrete for lower portion and cast in situ concrete for upper portion slab. When the composite slab using Half P.C. slab is deformed by flexural moment, horizontal shear happened at the interface between Half P.C. slab and topping concrete. To resist horizontal shear strength a scratch method has tried. To determine ultimate interface shear strength, shear stress, and shear coefficient, high and normal strength concrete are used for topping concrete. Major variables are compressive strength of topping concrete with or without shear reinforcement, quantitative roughness of the P.C. :surface and tie or untie of the stud with welded deformed wire fabric in the P.C. member. The Icross sectional area on joints is 3,200 $cm^2$ in all specimens. Test results showed that shear stress increased, as the depth of the quantitative roughness increased. The horizontal shear strength could be resisted with safe by the quantitative roughness without shear tie. A shear coefficient determinant equation is proposed such that K = 0.025918 + 0.0068894$\cdot$R – 0.000182354${\cdot}R^2$