• Title/Summary/Keyword: Surface repository

Search Result 70, Processing Time 0.034 seconds

A Study on the Prediction of HLW Temperature from Natural Ventilation Quantity using CFD (전산유체학을 이용한 고준위 방사성 폐기물 처분장의 자연환기량에 의한 온도예측)

  • Roh, Jang-Hoon;Yu, Yeong-Seok;Jang, Seung-Hyun;Park, Seon-Oh;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.22 no.6
    • /
    • pp.429-437
    • /
    • 2012
  • This study predicted temperature in the disposal tunnels using computational fluid dynamics based on natural ventilation quantity that comes from high altitude and temperature differences that are the characteristics of high level waste repository. The result of the previous study that evaluated quantitatively natural ventilation quantity using a hydrostatic method and CFD shows that significant natural ventilation quantity is generated. From the result, this study performed the prediction of temperature in disposal tunnels by natural ventilation quantity by the caloric values of the wastes, at both deep geological repository and surface repository. The result of analysis shows that deep geological repository is effective for thermal control in the disposal tunnels due to heat transfer to rock and the generation of sufficient natural ventilation quantity, while surface repository was detrimental to thermal control, because surface repository was strongly affected by external temperature, and could not generate sufficient natural ventilation quantity. Moreover, this study found that in the case of deep geological repository with a depth of 200 m, the heatof about $10^{\circ}C$ was transferred to the depth of 500 m. Thus, it is considered that if the high level waste repository scheduled to be built in the country is designed placing an emphasis on thermal control, deep geological repository rather than surface repository is more appropriate.

Development of Reference Scenarios Based on FEPs and Interaction Matrix for the Near-surface LILW Repository

  • Lee, Dong-Won;Kim, Chang-Lak;Park, Joo-Wan
    • Nuclear Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.539-546
    • /
    • 2001
  • Systematic procedure of developing radionuclide release scenarios was established based on FEP list and Interaction Matrix for near-surface LILW repository. FEPs were screened by experts'review in terms of domestic situation and combined into scenarios on the basis of Interaction Matrix analysis. Under the assumption of design scenario, The system domain was divided into three sections: Near-field, Far-field and Biosphere. Sub-scenarios for each section were developed, and then scenarios for entire system were built up with sub-scenarios of each section. Finally, sixteen design scenarios for near-surface repository were evaluated A reference scenario and other noteworthy scenarios were selected through experts'scenario screening.

  • PDF

Change of Fractured Rock Permeability due to Thermo-Mechanical Loading of a Deep Geological Repository for Nuclear Waste - a Study on a Candidate Site in Forsmark, Sweden

  • Min, Ki-Bok;Stephansson, Ove
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.187-187
    • /
    • 2009
  • Opening of fractures induced by shear dilation or normal deformation can be a significant source of fracture permeability change in fractured rock, which is important for the performance assessment of geological repositories for spent nuclear fuel. As the repository generates heat and later cools the fluid-carrying ability of the rocks becomes a dynamic variable during the lifespan of the repository. Heating causes expansion of the rock close to the repository and, at the same time, contraction close to the surface. During the cooling phase of the repository, the opposite takes place. Heating and cooling together with the, virgin stress can induce shear dilation of fractures and deformation zones and change the flow field around the repository. The objectives of this work are to examine the contribution of thermal stress to the shear slip of fracture in mid- and far-field around a KBS-3 type of repository and to investigate the effect of evolution of stress on the rock mass permeability. In the first part of this study, zones of fracture shear slip were examined by conducting a three-dimensional, thermo-mechanical analysis of a spent fuel repository model in the size of 2 km $\times$ 2 km $\times$ 800 m. Stress evolutions of importance for fracture shear slip are: (1) comparatively high horizontal compressive thermal stress at the repository level, (2) generation of vertical tensile thermal stress right above the repository, (3) horizontal tensile stress near the surface, which can induce tensile failure, and generation of shear stresses at the comers of the repository. In the second part of the study, fracture data from Forsmark, Sweden is used to establish fracture network models (DFN). Stress paths obtained from the thermo-mechanical analysis were used as boundary conditions in DFN-DEM (Discrete Element Method) analysis of six DFN models at the repository level. Increases of permeability up to a factor of four were observed during thermal loading history and shear dilation of fractures was not recovered after cooling of the repository. An understanding of the stress path and potential areas of slip induced shear dilation and related permeability changes during the lifetime of a repository for spent nuclear fuel is of utmost importance for analysing long-term safety. The result of this study will assist in identifying critical areas around a repository where fracture shear slip is likely to develop. The presentation also includes a brief introduction to the ongoing site investigation on two candidate sites for geological repository in Sweden.

  • PDF

Effect of the Repository Configuration on Radionuclide Transport with the Multi-compartment Model for the LILW Repository Performance

  • Park, Jin-Beak;Park, Joo-Wan;Kim, Chang-Lak;Joonhong Ahn;Daisuke Kawasaki
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.228-228
    • /
    • 2004
  • Nuclear Environment Technology Institute (KHNP-NETEC) developed the conceptual design of the low and intermediate-level radioactive waste (LILW) repository. Among many engineering challenges, it is of particular importance to find out an optimum arrangement of near-surface disposal vaults in the repository area to minimize the radionuclide flux and concentration at the interface between the geo-sphere and bio-sphere. (omitted)

  • PDF

Surface Modification of Bentonite for the Improvement of Radionuclide Sorption

  • Hong, Seokju;Kim, Jueun;Um, Wooyong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • Bentonite is the most probable candidate to be used as a buffer in a deep geological repository with high swelling properties, hydraulic conductivity, thermal conductivity, and radionuclide sorption ability. Among them, the radionuclide sorption ability prevents or delays the transport of radionuclides into the nearby environment when an accident occurs and the radionuclide leaks from the canister, so it needs to be strengthened in terms of long-term disposal safety. Here, we proposed a surface modification method in which some inorganic additives were added to form NaP zeolite on the surface of the bentonite yielded at Yeonil, South Korea. We confirmed that the NaP zeolite was well-formed on the bentonite surface, which also increased the sorption efficiency of Cs and Sr from groundwater conditions. Both NaP and NaX zeolite can be produced and we have demonstrated that the generation mechanism of NaX and NaP is due to the number of homogeneous/heterogeneous nucleation sites and the number of nutrients supplied from an aluminosilicate gel during the surface modification process. This study showed the potential of surface modification on bentonite to enhance the safety of deep geological radioactive waste repository by improving the radionuclide sorption ability of bentonite.

Potential repository domain for A-KRS at KURT facility site (KURT 부지 조건에서 A-KRS 입지 영역 도출)

  • Kim, Kyung-Su;Park, Kyung-Woo;Kim, Geon-Young;Choi, Heui-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.151-159
    • /
    • 2012
  • The potential repository domains for A-KRS (Advanced Korean Reference Disposal System for High Level Wastes) in geological characteristics of KURT (KAERI Underground Research Tunnel) facility site were proposed to develop a repository system design and to perform the safety assessment. The host rock of KURT facility site is one of major Mesozoic plutonic rocks in Korean peninsula, two-mica granite, which was influenced by hydrothermal alteration. The topographical features control the flow lines of surface and groundwater toward south-easterly and all waters discharge to Geum River. Fracture zones distributed in study site are classified into order 2 magnitude and their dominant orientations are N-S and E-W strike. From the geological features and fracture zones, the potential repository domains for A-KRS were determined spatially based on the following conditions: (1) fracture zone must not cross the repository; and (2) the repository must stay away from the fracture zones greater than 50 m. The western region of the fracture zones in the N-S direction with a depth below 200 m from the surface was sufficient for A-KRS repository. Because most of the fracture zones in N-S direction were inclined toward the east, we expected to find a homogeneous rock mass in the western region rather than in the eastern region. The lower left domain of potential domains has more suitable geological and hydrogeological conditions for A-KRS repository.

Radiological Safety Assessment for a Near-Surface Disposal Facility Using RESRAD-ONSITE Code

  • Jang, Jiseon;Kim, Tae-Man;Cho, Chun-Hyung;Lee, Dae Sung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.123-132
    • /
    • 2021
  • Radiological impact analyses were carried out for a near-surface radioactive waste repository at Gyeongju in South Korea. The RESRAD-ONSITE code was applied for the estimation of maximum exposure doses by considering various exposure pathways based on a land area of 2,500 ㎡ with a 0.15 m thick contamination zone. Typical influencing input parameters such as shield depth, shield materials' density, and shield erosion rate were examined for a sensitivity analysis. Then both residential farmer and industrial worker scenarios were used for the estimation of maximum exposure doses depending on exposure duration. The radiation dose evaluation results showed that 60Co, 137Cs, and 63Ni were major contributors to the total exposure dose compared with other radionuclides. Furthermore, the total exposure dose from ingestion (plant, meat, and milk) of the contaminated plants was more significant than those assessed for inhalation, with maximum values of 5.5×10-4 mSv·yr-1 for the plant ingestion. Thus the results of this study can be applied for determining near-surface radioactive waste repository conditions and providing quantitative analysis methods using RESRAD-ONSITE code for the safety assessment of disposing radioactive materials including decommissioning wastes to protect human health and the environment.

ESTIMATION OF THE BEHAVIORS OF SELENIUM IN THE NEAR FIELD OF REPOSITORY

  • Kim, Seung-Soo;Min, Jae-Ho;Baik, Min-Hoon;Kim, Gye-Nam;Choi, Jong-Won
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.945-952
    • /
    • 2012
  • The sorption of selenium ions onto iron and iron compounds as a disposal container material and its corrosion products, and onto bentonite as a buffer material, was studied to understand the behaviors of selenium in a waste repository. Selenite was sorbed onto commercial magnetite very well in solutions at around pH 9, but silicate hindered their sorption onto both magnetite and ferrite. Unlike commercial magnetite and ferrite, flesh synthesized magnetite, green rust and iron greatly decreased selenium concentration even in a silicate solution. These results might be due to the formation of precipitates, or the sorption of selenide or selenite onto an iron surface at below Eh= -0.2 V. Red-colored Se(cr) was observed on the surface of a reaction bottle containing iron powder added into a selenite solution. Silicate influences on the sorption onto magnetite and iron for selenide are the same as those for selenite. Even though bentonite adsorbed a slight amount of selenite, the sorption cannot be ignored in the waste repository since a very large quantity of bentonite is used.

AN ANALYSIS OF THE FACTORS AFFECTING THE HYDRAULIC CONDUCTIVITY AND SWELLING PRESSURE OF KYUNGJU CA-BENTONITE FOR USE AS A CLAY-BASED SEALING MATERIAL FOR A HIGH-LEVEL WASTE REPOSITORY

  • Cho, Won-Jin;Lee, Jae-Owan;Kwon, Sang-Ki
    • Nuclear Engineering and Technology
    • /
    • v.44 no.1
    • /
    • pp.89-102
    • /
    • 2012
  • The buffer and backfill are important components of the engineered barrier system in a high-level waste repository, which should be constructed in a hard rock formation at a depth of several hundred meters below the ground surface. The primary function of the buffer and backfill is to seal the underground excavation as a preferred flow path for radionuclide migration from the deposited high-level waste. This study investigates the hydraulic conductivity and swelling pressure of Kyungju Ca-bentonite, which is the candidate material for the buffer and backfill in the Korean reference high-level waste disposal system. The factors that influence the hydraulic conductivity and swelling pressure of the buffer and backfill are analyzed. The factors considered are the dry density, the temperature, the sand content, the salinity and the organic carbon content. The possibility of deterioration in the sealing performance of the buffer and backfill is also assessed.