• Title/Summary/Keyword: Surface reflectance

Search Result 615, Processing Time 0.025 seconds

The Single-Side Textured Crystalline Silicon Solar Cell Using Dielectric Coating Layer (절연막을 이용한 단면 표면조직화 결정질 실리콘 태양전지)

  • Do, Kyeom-Seon;Park, Seok-Gi;Myoung, Jae-Min;Yu, Gwon-Jong;Song, Hee-Eun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.245-248
    • /
    • 2011
  • Many researches have been carried out to improve light absorption in the crystalline silicon solar cell fabrication. The rear reflection is applied to increase the path length of light, resulting in the light absorption enhancement and thus the efficiency improvement mainly due to increase in short circuit current. In this paper, we manufactured the silicon solar cell using the mono crystalline silicon wafers with $156{\times}156mm^2$, 0.5~3.0 ${\Omega}{\cdot}cm$ of resistivity and p-type. After saw damage removal, the dielectric film ($SiN_x$)on the back surface was deposited, followed by surface texturing in the KOH solution. It resulted in single-side texturing wafer. Then the dielectric film was removed in the HF solution. The silicon wafers were doped with phosphorus by $POCl_3$ with the sheet resistance 50 ${\Omega}/{\Box}$ and then the silicon nitride was deposited on the front surface by the PECVD with 80nm thickness. The electrodes were formed by screen-printing with Ag and Al paste for front and back surface, respectively. The reflectance and transmittance for the single-sided and double-sided textured wafers were compared. The double-sided textured wafer showed higher reflectance and lower transmittance at the long wavelength region, compared to single-sided. The completed crystalline silicon solar cells with different back surface texture showed the conversion efficiency of 17.4% for the single sided and 17.3% for the double sided. The efficiency improvement with single-sided textured solar cell resulted from reflectance increase on back surface and light absorption enhancement.

  • PDF

A study of Reflectance of Textured Crystalline Si Surface Fabricated by using Preferential Aqueous Etching and Grinding Processes (그라인딩 공정과 선택적 습식 식각 공정을 이용한 단결정 실리콘 표면의 반사율에 관한 연구)

  • Woo, Tae-Ki;Kim, Young-Hwan;Ahn, Hyo-Sok;Kim, Seoung-Il
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.3
    • /
    • pp.61-65
    • /
    • 2009
  • We produced noble surface structure of crystalline Si for solar cells by using preferential aqueous etching on crystallographic defects which were induced by grinding process. We analyzed the reflectance of textured surface according to surface topography resulting from various etchant concentrations and duration of etching process. The crystallographic defects and textured surface topography were investigated by using transmission electron microscopy and secondary electron microscopy, respectively. Also, the measurement of reflectance of textured surface utilizes spectrophotometer. The optimized texture surface exhibits improved result indicating reflectance of below ave. 1%. And it is cost-effective as well as taking short time within a few minutes.

  • PDF

Surface Reflectance Related with Color Characteristics for Pig × Wild Boar Meat

  • Irie, M.;Nishimori, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.9
    • /
    • pp.1321-1325
    • /
    • 2001
  • Color characteristics of pig ${\times}$ wild boar meat were determined with a fiber-optic spectrophotometer. The spectrophotometric characteristic of reduced-myoglobin observed after cutting immediately changed to the spectrophotometric characteristic of oxymyoglobin after 15 minutes of cutting. The spectrophotometry at 400 to 700 nm after 30, 45, 60, 90 and 120 minutes of cutting changed slightly. Compared with M. longissimus thoracis, M. rhomboideus had higher reflectance around 400 nm and from 650 to 1,100 nm and M. spinalis was lower in the visible light region after 60 minutes of cutting. The pig ${\times}$ wild boar meat was similar in reflectance shape with pork but was lower in intensity. The differences depended on the anatomical location. The M. rhomboideus from pig ${\times}$ wild boar had greatly lower reflectance than that from pig, the M. longissimus thoracis reflectance was lower, but M. spinalis reflectance hardly differed. These results showed that pig ${\times}$ wild boar meat had no special characteristic of blooming but had distinguishing characteristic of meat color among anatomical locations.

A Study on Diffusion Constant Measurement Using Light Reflectance within Biological Tissue (생체조직내에서 반사광을 이용한 확산 상수의 측정에 관한 연구)

  • 임현수
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.227-234
    • /
    • 1996
  • This paper is the study of the diffusion constant in order to calculate the percent oxygenation and percent blood volume using reflectance light within biological tissue. The diffusion constant play major role in percent oxygenation and percent blood volume and varies with the biological material such as hemolyzed blood, whole blood, dermis and epidermis in vivo tissue. The diffusion constant can be modeled to consist of a contribution from bloodless tissue and blood present in tissue. The reflectance light for experimental are red light of 660nm, infrared light of 880nm, green light of 569nm. The correlation between the diffusion constant and biological tissue was analyzed by the intensity of reflectance light at different depth within human limb. The reflectance light was changed in response to physiological changes within biological tissue. The data for diffusion constant were obtained at different depth beneath the surface of the skin and will be utilized to amen the percent oxygenation and percent blood volume.

  • PDF

Development of Nondestructive Grouping System for Soil Organic Matter Using VIS and NIR Spectral Reflectance

  • Sung J.H.
    • Agricultural and Biosystems Engineering
    • /
    • v.6 no.1
    • /
    • pp.15-21
    • /
    • 2005
  • This study was conducted to develop a nondestructive grouping system for soil organic matter using visible (VIS) and near infrared (NIR) spectroscopic method. The artificial light was irradiated on the cut soil surface at 15 to 20 cm depths to reduce the errors of light at open field. The reflectance energy from the cut soil surface was measured to group the soil organic matter using VIS/NIR light sensor with narrow band pass filter. From reflectance spectra of soil samples, the sensitive wavelengths for measuring the soil organic matter were selected and compared to previous research results. The grouping system for soil organic matter consisted of light sensor with band pass filter measuring the reflectance energy of the cut soil surface, global positing system (GPS), analog-to-digital (AD) converter, computer and operating software. The regression models to predict the soil organic matter were developed and evaluated. From field test, the accuracies of the developed light sensor system were 81.3% for five-stage grouping of the soil organic matters and 91.0% for three-stages grouping of the soil organic matters, respectively. It could be possible to support the decision making for variable rate applications with the developed grouping system for soil organic matter in precision agriculture.

  • PDF

Analysis of BRD Components Over Major Land Types of Korea

  • Kim, Sang-Il;Han, Kyung-Soo;Park, Soo-Jea;Pi, Kyoung-Jin;Kim, In-Hwan;Lee, Min-Ji;Lee, Sun-Gu;Chun, Young-Sik
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.653-664
    • /
    • 2010
  • The land surface reflectance is a key parameter influencing the climate near the surface. Therefore, it must be determined with sufficient accuracy for climate change research. In particular, the characteristics of the bidirectional reflectance distribution function (BRDF) when using earth observation system (EOS) are important for normalizing the reflected solar radiation from the earth's surface. Also, wide swath satellites like SPOT/VGT (VEGETATION) permit sufficient angular sampling, but high resolution satellites are impossible to obtain sufficient angular sampling over a pixel during short period because of their narrow swath scanning. This gives a difficulty to BRDF model based reflectance normalization of high resolution satellites. The principal objective of the study is to add BRDF modeling of high resolution satellites and to supply insufficient angular sampling through identifying BRDF components from SPOT/VGT. This study is performed as the preliminary data for apply to high-resolution satellite. The study provides surface parameters by eliminating BRD effect when calculated biophysical index of plant by BRDF model. We use semi-empirical BRDF model to identify the BRD components. This study uses SPOT/VGT satellite data acquired in the S1 (daily) data. Modeled reflectance values show a good agreement with measured reflectance values from SPOT satellite. This study analyzes BRD effect components by using the NDVI(Normalized Difference Vegetation Index) and the angle components such as solar zenith angle, satellite zenith angle and relative azimuth angle. Geometric scattering kernel mainly depends on the azimuth angle variation and volumetric scattering kernel is less dependent on the azimuth angle variation. Also, forest from land cover shows the wider distribution of value than cropland, overall tendency is similar. Forest shows relatively larger value of geometric term ($K_1{\cdot}f_1$) than cropland, When performed comparison between cropland and forest. Angle and NDVI value are closely related.

Investigation of the surface structure improvement to reduce the optical losses of crystalline silicon solar cells (결정질 실리콘 태양전지의 광학적 손실 감소를 위한 표면구조 개선에 관한 연구)

  • Lee Eun-Joo;Lee Soo-Hong
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.4-8
    • /
    • 2006
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si AR layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layer were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The surface morphology of porous Si layers were investigated using SEM. The formation of a porous Si layer about $0.1{\mu}m$ thick on the textured silicon wafer result in an effective reflectance coefficient Reff lower than 5% in the wavelength region from 400 to 1000nm. Such a surface modification allows improving the Si solar cell characteristics.

  • PDF

Investigation of the surface structure improvement to reduce the optical losses of crystalline silicon solar cells (결정질 실리콘 태양전지의 광학적 손실 감소를 위한 표면구조 개선에 관한 연구)

  • Lee, Eun-Joo;Lee, Soo-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.183-186
    • /
    • 2006
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si AR layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layer were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The surface morphology of porous Si layers were investigated using SEM. The formation of a porous Si layer about $0.1{\mu}m$ thick on the textured silicon wafer result in an effective reflectance coefficient $R_{eff}$ lower than 5% in the wavelength region from 400 to 1000nm. Such a surface modification allows improving the Si solar cell characteristics.

  • PDF

A Study of Reflectance Variations of Solar Concentrators (태양열 집광판의 반사율 변화 연구)

  • Lee, Hyun-Jin;Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack;Lee, Seong-Uk;Park, Moon-Hee
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.5
    • /
    • pp.107-114
    • /
    • 2010
  • Understanding of reflectance of solar concentrators is important for assessing concentration performance. However inaccurate data about refractive indices of constituent materials and dust accumulation on the surface often prevent figuring out reflectance variations. The current study proposes an approach calculating concentrator reflectance based on the refractive index of glass obtained from reflectance and transmittance measurements. This approach improved accuracy of solar-averaged reflectance from 2.9% to 0.4% compared to the use of existing reference data. Reflectance variations with incidence angles are negligible up to $60^{\circ}C$ at various glass thicknesses. When concentrators are contaminated with dust during 2 months specular reflectance loss of vertically exposed concentrators is less than 7%. However for horizontally exposed concentrators the loss significantly increases up to 40% while dependence of reflectance on incidence angles becomes strong. Measurements of hemispherical reflectance indicate that 80 percentage of the loss comes from scattering rather than absorption by dust. Data of refractive index and reflectance provided in the current study will help estimate or model the concentrated solar flux.

Color Characteristics of 3D-Printed TPU Material Applied with Ultra-Violet Curable Digital Printing Process (자외선 경화형 디지털 프린팅을 이용한 3D 프린팅 TPU 소재의 색채 특성)

  • Lee, Sunhee;Park, Soyeon;Jung, Imjoo;Lee, Jungsoon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.6
    • /
    • pp.1052-1062
    • /
    • 2021
  • This study aims to confirm the possibility of Ultra-Violet (UV)-printed 3D printing materials using thermal polyurethane (TPU) with CMYK colors by applying an eco-friendly UV digital printing process. A UV-printed 3D printing TPU material was prepared with cycles of UV printing and CMYK colors. Dyeability of the 3D TPU samples with cycles of UV printing and CMYK were analyzed for thickness, weight, surface roughness, reflectance, colorimetry, and K/S values. The thickness and weight of 3D-printed TPU samples with cycles of UV printing are increased with overprints from 1 to 5. The surface roughness of 3D-printed TPU samples with increasing UV prints were decreased, meaning that the surface of TPU samples becomes gradually smoother. The reflectance spectra of CMYK UV-printed TPU samples showed the surface reflectance within each characteristic wavelength of CMYK. The 3D-printed TPU samples, subjected to UV printing twice or more, showed low surface reflectance. After examining the L*a*b* of the 3D-printed TPU samples by the cycles of UV printing, the study found that the more UV got printed more than 2 times, the closer the color to each CMYK.