• Title/Summary/Keyword: Surface profile

Search Result 1,861, Processing Time 0.029 seconds

Measurement and Analysis of the Section Profile for Feature Line Surface on an Automotive Outer Panel (자동차 외판 특징선 곡면의 단면 형상 측정과 분석)

  • Choe, W.C.;Chung, Y.C.
    • Transactions of Materials Processing
    • /
    • v.24 no.2
    • /
    • pp.107-114
    • /
    • 2015
  • The current study presents a geometric measurement and analysis of the section profile for a feature line surface on an automotive outer panel. A feature line surface is the geometry which is a visually noticeable creased line on a smooth panel. In the current study the section profile of a feature line surface is analyzed geometrically. The section profile on the real press panel was measured using a coordinate measuring machine. The section profiles from the CAD model and the real panel are aligned using the same coordinate system defined by two holes near the feature line. In the aligned section profiles the chord length and height of the curved part were measured and analyzed. The results show that the feature line surface on the real panel is doubled in width size.

Prediction the surface profile in the single point diamond turning (정밀 선삭가공에서의 표먼거칠기곡선 예측)

  • Yoon, Young-Sik;Lee, Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.189-198
    • /
    • 1994
  • The achievable machining accuracy depends upon the level of the micro-engineering, and the today's accuracy targets are dimensional tolerances in the order of 10nm and surface roughness in the order of 1nm. Such requirements cannot be satisfied by the conventional machining processes. Single point diamond turning is the one of new techniques which can produce the parts with such accuracy limits. The aims of this thesis are to get a better understanding of the complex cutting process with a diamond tool and, consequently, to develope a predicting model of a turned surface profile. In order to predict the turned surface profile, a numerical model has been developed. By means of this model, the influence of the operational settings-the material properties of the workpiece, the geometry of the cutting tool and the dynamic behaviour of the lathe-and their influences via the cutting forces upon the surface roughness have been estimated.

  • PDF

Dispersive white-light interferometry using polarization of light for thin-film thickness profile measurement (편광분리 분산 분산형 백색광 간섭계를 이용한 박막두께형상측정법)

  • Ghim Y.S.;Kim S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.565-568
    • /
    • 2005
  • We describe a new scheme of dispersive white-light interferometer that is capable of measuring the thickness profile of thin-film layers, for which not only the top surface height profile but also the film thickness of the target surface should be measured at the same time. The interferometer is found useful particularly for in-situ inspection of micro-engineered surfaces such as liquid crystal displays, which requires for high-speed implementation of 3-D surface metrology.

  • PDF

Analysis of Tooth Surface Compressive Stress of Conical Involute Gear by Profile Modification (치형수정에 의한 코니칼 인볼류트 기어의 치면 압축응력 해석)

  • Kim, Junseong;Lee, Hyeonsu;Kim, Donguk;Lyu, Sungki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.5
    • /
    • pp.40-49
    • /
    • 2010
  • Conical involute gears are being used for marine gearboxes, automotive transmissions, and robots, and so on, but not much. As involute profile gear, conical involute gear not only can be engaged with spur and helical gear but also can be used for power transmission of parallel, crossed and skewed axis with small angle. Hence, conical involute gears are likely to develop in future. Through a study on the basic theory of conical involute gear, tooth surface compressive stress analysis was performed by using commercial modeling program, comparing before and after profile modification. As a result, it noticed that tooth profile modification is able to relieve more tooth surface compressive stress than before modification.

Orientation Correction of a Cylinder for Surface-Profile Measurement (원통 축 방향의 표면거칠기 측정을 위한 시료의 자세 보정)

  • 조남규
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.108-120
    • /
    • 1996
  • A new technique and theory are proposed which correct orientation of a cylinder to perform a reliable measurement of the surface profile. We analyze characteristics of machined surfaces, e.g., ground, lapped and turned surfaces. Based upon the results. the optimum correction technique is derived by the statistical method. To verify the techinques, measurements are carried out by using the contact stylus profilometer on a controllable table. The measurement shows that surface information of cylinders can be acquired with high accuracy.

  • PDF

Analysis of Texture Characteristics of Asphalt Pavements (아스팔트 포장의 노면조직 특성 분석)

  • Hong, Seong Jae;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.1-6
    • /
    • 2017
  • PURPOSES : Pavement textures can be categorized into four according to wavelength: microtexture, macrotexture, megatexture (roads), and roughness. Pavement surface texture influences a number of aspects of tire-pavement interaction such as wet-weather friction, tire-pavement noise, splash, spray, tire-wear, and rolling resistance. In particular, macrotexture is the pavement surface characteristic that considerably impacts tire-pavement noise. In general, it can be demonstrated that tire-pavement noise increases with the increase of texture depth and wavelength. Recently, mean profile depth (MPD) and wavelength have been used to evaluate tire-pavement noise. This study aimed to identify the relationship between mean profile depth and average wavelength for asphalt pavement based on the information obtained on a number of asphalt pavement sections. METHODS : Profile data were collected from a number of expressway sections in Korea. In addition, mean profile depth and average wavelength were calculated by using this profile data. Statistical analysis was performed to determine the correlationship between mean profile depth and average wavelength. RESULTS:This study demonstrates a linear relationship between mean profile depth and average wavelength for asphalt concrete pavement. CONCLUSIONS :The strong relationship between mean profile depth and average wavelength of asphalt pavement was determined in this study.

Surface alterations following instrumentation with a nylon or metal brush evaluated with confocal microscopy

  • Kim, Young-Sung;Park, Jun-Beom;Ko, Youngkyung
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.5
    • /
    • pp.310-318
    • /
    • 2019
  • Purpose: Surface alterations of titanium discs following instrumentation with either a nylon brush or a metal brush were evaluated. Methods: A total of 27 titanium discs with 3 surface types (9 discs for each type), including machined (M) surfaces, sandblasted and acid-etched (SA) surfaces, and surfaces treated by resorbable blast media (RBM), were used. Three discs were instrumented with a nylon brush, another 3 discs were instrumented with a metal brush, and the remaining 3 discs were used as controls for each surface type. Surface properties including the arithmetic mean value of a linear profile (Ra), maximum height of a linear profile (Rz), skewness of the assessed linear profile (Rsk), arithmetic mean height of a surface (Sa), maximum height of a surface (Sz), developed interfacial area ratio (Sdr), skewness of a surface profile (Ssk), and kurtosis of a surface profile (Sku) were measured using confocal microscopy. Results: Instrumentation with the nylon brush increased the Ra, Sa, and Sdr of the M surfaces. On the SA surfaces, Ra, Sa and Sdr decreased after nylon brush use. Meanwhile, the roughness of the RBM surface was not affected by the nylon brush. The use of the metal brush also increased the Ra, Sa, and Sdr of the M surface; however, the increase in Sdr was not statistically significant (P=0.119). The decreases in the Rz, Sz, Ra, Sa, and Sdr of the SA surfaces were remarkable. On the RBM surfaces, the use of the metal brush did not cause changes in Ra and Sa, whereas Rz, Sz, and Sdr were reduced. Conclusions: Titanium surfaces were altered when instrumented either with a nylon brush or a metal brush. Hence, it is recommended that nylon or metal brushes be used with caution in order to avoid damaging the implant fixture/abutment surface.

Evaluation on the Optimum Grinding of Aspheric Surface Micro Lens for Camera Phone (휴대폰 카메라용 비구면 마이크로 렌즈 최적 연삭가공 평가)

  • Baek Seung-Yub;Lee Eun-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2006
  • As consumers in optics, electronics, aerospace and electronics industry grow, the demand for ultra-precision aspheric surface lens increases higher. To enhance the precision and productivity of ultra precision aspheric surface micro lens, the development of ultra-precision grinding system and process for the aspheric surface micro lens are described. In the work reported in this paper, an ultra-precision grinding system for manufacturing the aspheric surface micro lens was developed by considering the factors affecting the ground surface roughness and profile accuracy. This paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. The optimization of grinding conditions on ground surface roughness and profiles accuracy is investigated using the design of experiments.

Polishing Pad Analysis and Improvement to Control Performance (연마성능 제어를 위한 연마패드표면 해석과 개선)

  • Park, Jae-Hong;Kinoshita, Masaharu;Yoshida, Koichi;Park, Ki-Hyun;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.839-845
    • /
    • 2007
  • In this paper, a polishing pad has been analyzed in detail, to understand surface phenomena of polishing process. The polishing pad plays a key role in polishing process and is one of the important layer in polishing process, because it is a reaction layer of polishing[1]. Pad surface physical property is also ruled by pad profile. The profile and roughness of pad is controlled by different types of conditioning tool. Conditioning tool add mechanical force to pad, and make some roughness and profile. Formed pad surface will affect on polishing performance such as RR (Removal Rate) and uniformity in CMP Pad surface condition is changed by conditioning tool and dummy run and is stable at final. And this research, we want to reduce break-in and dummy polishing process by analysis of pad surface and artificial machining to make stable pad surface. The surface treatment or machining enables to control the surface of polishing pad. Therefore, this research intends to verify the effect of the buffing process on pad surface through analysis of the removal rate, friction force and temperature. In this research, urethane polishing pad which is named IC pad(Nitta-Haas Inc.) and has micro pore structure, is studied because, this type of pad is most conventional type.

Selection of optimal machining condition for productivity enhancement of aspheric surface lens (비구면 렌즈의 생산성 향상을 위한 최적가공조건선정)

  • Baek S.Y.;Lee H.D.;Kim S.C.;Lee E.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.561-562
    • /
    • 2006
  • To enhance the precision and productivity of ultra precision aspheric surface micro lens, the development of ultra-precision grinding system and process for the aspheric surface micro lens are described. In the work reported in this paper, an ultra-precision grinding system for manufacturing the aspheric surface micro lens was developed by considering the factors affecting the grinding surface roughness and profile accuracy. This paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. The optimization of grinding conditions on ground surface roughness and profiles accuracy is investigated using the design of experiments.

  • PDF