• Title/Summary/Keyword: Surface pressure

Search Result 6,655, Processing Time 0.033 seconds

The Assessment of Propeller Induced Fluctuating Pressure Influencing Hull Girder Vibration Analysis (전 선체 진동에 영향을 미치는 프로펠러 변동압력의 평가)

  • Lee, Ki-Moon;Yang, Sung-Boong;Kim, Moon-Su
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2009.09a
    • /
    • pp.59-64
    • /
    • 2009
  • The propeller induced forces acting on a hull are surface forces and bearing forces. The bearing forces are the forces acting directly on the propeller which are transferred to the hull through the propeller bearings. The surface forces are those which act by fluid pressure directly on the various hull surfaces. Because the surface force is main source to oscillate stern constructions and deckhouse, the estimation of surface force is very important to predict response of forced vibration of that. The estimation methods were statistical analysis method, theoretical analysis method and method through model test.

  • PDF

The Elastic Contact Analysis of 3D Rough Surface of Nongaussian Height Distribution (Kurtosis를 고려한 3차원 거친 표면의 탄성접촉해석)

  • Kim, Tae-Wan;Koo, Young-Pil;Cho, Yong-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.53-60
    • /
    • 2001
  • Surface roughness plays a significant role in friction, wear, and lubrication in machine components. Most engineering surfaces have the nongaussian height distribution. So, in this study, contact simulations are conducted for not only gaussian surfaces but also nongaussian surfaces. Nongaussian rough surface considering the kurtosis is generated numerically And the effects of kurtosis on real contact area fraction, average gap, and mean asperity contact pressure are studied. It will be shown that the real contact area fraction and the mean asperity contact pressure are sensitive to the characteristics of surface geometry according to kurtosis.

  • PDF

Surface-Properties of Poly(Ethylene Terephthalate) Fabric by In-line Atmospheric Plasma Treatments (연속 대기압 플라즈마를 처리한 폴리에스테르 섬유의 표면 특성)

  • Kwon, Il-Jun;Park, Sung-Min;Koo, Kang;Song, Byung-Kab;Kim, Jong-Won
    • Textile Coloration and Finishing
    • /
    • v.19 no.4
    • /
    • pp.38-46
    • /
    • 2007
  • Surface properties of the plasma treated fabric were changed while maintaining its bulk properties. Surface of plasma treated fabric take charge of enhanced adhesion by surface etching, surface activity. The water repellency coating Poly(Ethylene Terephthalate) fabric was treated with atmospheric pressure plasma using various parameters such as Argon gas, treatment time, processing power. Morphological changes by atmospheric pressure plasma treatment were observed using field emmission scanning electron microscopy(FE-SEM) and the zeta-potential measurement, contact angle measurement equipment. At the atmospheric pressure plasma treatment time of 150 sec, the power of 800W, the best wettability and peel strength were obtained. And we confirmed the possibility of industrial application by using atmospheric plasma system.

Experimental Study on Pressure Welding of Cu and Al at Cold and Warm Temperatures (냉간 및 온간에서의 구리와 알루미늄 압접에 관한 실험적 연구)

  • 심경섭;김용일;장성동;김원술;이용신
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.225-228
    • /
    • 2003
  • This paper is concerned with pressure welding, which has been known as a main bonding mechanism for the cold and warm clad forming. Bonding characteristics of pressure welding between the copper and aluminum plates are experimentally investigated. Experiments are performed at the cold and warm temperature range with the variation of important factors such as magnitude of pressure, surface roughness of Cu and Al plates, and pressure holding time. It could be concluded that the bonding criterion might be given as a function of bonding pressure and surface roughness for the cold and warm temperature ranges.

  • PDF

Unsteady Pressure Measurement of Fan Stator Vane Using Pressure Sensitive Paint

  • Sakamoto, Kazuyuki;Tsuchiya, Naoki;Yamamoto, Masahiko;Hamano, Yasunori;Fujii, Kozo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.789-794
    • /
    • 2004
  • The pressure sensitive paint (PSP) technique has been well established in external flow field. However, there are still unresolved issues in internal flow field. This work was focused on the application to unsteady pressure measurement of fan flow field. The PSP measurement system was established and the image processing software was developed. First, the performance of PSP was investigated at the static cell. Then the unsteady PSP measurement was carried out at fan test facility. PSP data images were acquired from the suction and pressure surface of stator vanes. Pressure distributions on the surface of the stator vane were detected non-intrusively. The issues of image acquisition and image processing were clarified through the practical PSP application to fan flow field.

  • PDF

Process Conditions for Low Bonding Strength in Pressure Welding of Cu-Al Plates at Cold and Warm Temperatures (Cu-Al 판재의 냉간 및 온간 압접에서 낮은 접합강도를 갖는 공정 조건에 관한 연구)

  • 심경섭;이용신
    • Transactions of Materials Processing
    • /
    • v.13 no.7
    • /
    • pp.623-628
    • /
    • 2004
  • This paper is concerned with pressure welding, which has been known as a main bonding mechanism during the cold and warm forming such as clad extrusion or bundle extrusion/drawing. Bonding characteristics between the Cu and Al plates by pressure welding are investigated focusing on the weak bonding. Experiments are performed at the cold and warm temperatures ranging from the room temperature to $200^{\circ}C$. The important factors examined in this work are the welding pressure, pressure holding time, surface roughness, and temperature. A bonding map, which can identify the bonding criterion with a weak bonding strength of IMPa , is proposed in terms of welding pressure and surface roughness fur the cold and warm temperature ranges.

Optimal Design of Thrust Surface Oil Groove of a High Side Scroll Compressor (고압식 스크롤 압축기 스러스트 오일 그루브 최적 설계)

  • Kim, Hyun-Jin;No, Young-Jae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.3
    • /
    • pp.127-133
    • /
    • 2017
  • Performance analysis has been carried out on a high side scroll compressor that had a fixed scroll equipped with a circular oil groove on its thrust surface. Oil was supplied to the oil groove through an intermittent opening from a high pressure oil reservoir formed inside the orbiting scroll hub. Oil in the groove was then delivered to both suction and back pressure chambers by pressure differentials and viscous pumping action of the orbiting scroll base plate. Mathematical modeling of this oil groove system was incorporated into a main compressor performance simulation program for an optimum oil groove design. The study findings were as follows. Pressure in the oil groove can be controlled by changing its configuration and the oil passage area. With an enlarged oil passage, the pressure in the oil groove heightens due to an increased flow rate, but the pressure elevation in the back pressure chamber is small, resulting in reduced friction loss at the thrust surface between the two scrolls. On the other hand, by increasing the oil passage area, the oil content in the refrigerant flow increases. Considering all these factors, the energy efficiency ratio could be improved by about 3.6% under the ARI condition by an optimal oil groove design.

Behavior of boiling heat transfer at coated heating surface(In the range of subatmosptheric pressure) (피복된 전열면에서의 비등특성(대기압 이하의 압력에서))

  • Moon D.Y;Oh S.C.;Yim C.S
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 1977
  • This paper describes an experimental investigation which has been carried out with distilled water with the range of heat flux and pressure covering 7,400-28,000kcal/$m^2/h$ and 0.42-1.0332kg/$cm^{2}abs$, respectively. In this experiment, Nickel coated mirror surface heater of 5 cm O.D. was used as a heating source. The conclusions summerized as follows;1. The useful correlation of the test data for the heat transfer coefficient is presented as a function of the pressure. $$a/a_{s}=c{\times}p\;0.18$$ where a is the heat transfer coefficient and $a_s$ is the heat transfer coefficient at atmospheric pressure and p is the pressure, C is constant. 2. The bubble diameter near the heating surface and rising velocity increased with the heat flux. 3. A decrease in pressure results in the decrease of the number of nucleation sites and the increase of the bubble volume. 4. Bubble rising velocity differences are incrased maximumly up to $200\%$ of that at atmopheric pressure.

  • PDF

The Improvement of Surface Roughness of Poly-$Si_{1-x}Ge_x$Thin Film Using Ar Plasma Treatment (아르곤 플라즈마처리에 의한 다결정 $Si_{1-x}Ge_x$박막의 표면거칠기 개선)

  • 이승호;소명기
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.11
    • /
    • pp.1121-1128
    • /
    • 1997
  • In this study, the Ar plasma treatment was used to improve the surface roughness of Poly-Si1-xGex thin film deposited by RTCVD. The surface roughness and the resistivity of Si1-xGex thin film were investigated with variation of Ar plasma treatment parameters (electrode distance, working pressure, time, substrate temperature and R.F power). When the Ar plasma treatment was used, the cluster size decreased by the surface etching effect due to the increasing surface collision energy of particles (ion, neutral atom) in plasma under the conditions of decreasing electrode distance and increasing pressure, time, temperature, and R. F power. Although the surface roughness value decreased by the reduction of the cluster size due to surface etching effect, however, the resistivity increased. This may be due to the surface damage caused by the increasing surface collision energy. It was concluded that the surface roughness could be improved by the Ar plasma treatment, while the resistivity was increased by the surface damage on the substrate.

  • PDF

Wind flow around rectangular obstacles with aspect ratio

  • Lim, Hee-Chang
    • Wind and Structures
    • /
    • v.12 no.4
    • /
    • pp.299-312
    • /
    • 2009
  • It has long been studied about the flow around bluff bodies, but the effect of aspect ratio on the sharp-edged bodies in thick turbulent boundary layers is still argued. The author investigates the flow characteristics around a series of rectangular bodies ($40^d{\times}80^w{\times}80^h$, $80^d{\times}80^w{\times}80^h$ and $160^d{\times}80^w{\times}80^h$ in mm) placed in a deep turbulent boundary layer. The study is aiming to identify the extant Reynolds number independence of the rectangular bodies and furthermore understand the surface pressure distribution around the bodies such as the suction pressure in the leading edge, when the shape of bodies is changed, responsible for producing extreme suction pressures around the bluff bodies. The experiments are carried out at three different Reynolds numbers, based on the velocity U at the body height h, of 24,000, 46,000 and 67,000, and large enough that the mean boundary layer flow is effectively Reynolds number independent. The experiment includes wind tunnel work with the velocity and surface pressure measurements. The results show that the generation of the deep turbulent boundary layer in the wind tunnel and the surface pressure around the bodies were all independent of Reynolds number and the longitudinal length, but highly dependent of the transverse width.