• 제목/요약/키워드: Surface polymerization

검색결과 597건 처리시간 0.032초

상아질 접착제의 중합 시간 조절에 따른 복합레진의 중합 수축 방향의 변화 (THE EFFECT OF ADHESIVE CURING TIMING ON THE DIRECTION OF POLYMERIZATION SHRINKAGE OF COMPOSITE RESIN)

  • 배지현;오명환;김창근;손호현;엄정문;조병훈;권혁춘
    • Restorative Dentistry and Endodontics
    • /
    • 제26권4호
    • /
    • pp.316-325
    • /
    • 2001
  • The purpose of this study was to evaluate the effect of adhesive curing timing on the direction of polymerization shrinkage of light-curing composite resin. In this study, the curing times of adhesive and composite resin were measured by differential scanning calorimeter(DSC). 28 extracted human molars were embedded in clear resin and box-type cavities were prepared. Based on DSC data, the experimental teeth were divided into 4 groups. Group 1: no bond; Group 2: late curing; Group 3: Intermediate curing; Group 4: Early curing. After treating with adhesive, the buccal cavities were filled with Z-100 hybrid composite resin and the lingual ones were filled with AEliteflo flowable composite resin. The depressions at the surface were measured by surface profilometer, then the specimens were embedded in clear resin and sectioned. Impressions were obtained and used to get epoxy resin replicas. The epoxy replicas were gold-coated and observed under SEM. Average Maximum Gap(AMG), Gap Proportion(GP), Average Marginal Index(AMI) were used to compare the shrinkage gap of each group. The results were statistically analyzed using the Kruskal-Wallis One Way ANOVA, Student-Newman-Keuls method. The results of this study were as follows. 1. Average Maximum Gap, Gap Proportion, Average Marginal Index and depression at the surface or Z-100 hybride composite resin were smaller than those of AEliteflo flowable composite resin(P<0.05). 2. When the bonding between composite resin and tooth structure was strong, the shrinkage gap was small, and depression at the surface was deep(P<0.05). 3. In the well-bonded group, light-curing composite resin shrank toward bonded cavity wall, not toward light source. The result suggested that the direction of polymerization shrinkage was affected by the quality of bonding in the dentin-resin interface. The strong was the bonding between composite resin and tooth structure, the smaller was the gap and the deeper was the depression at the surface. Then the flow to compensate the polymerization shrinkage proceeded from surface to bonded cavity wall.

  • PDF

Kevlar 49 섬유 표면에 대한 MAN의 Graft 공중합에 관한 연구 (Graft Copolymerization of Methacrylonitrile(MAN) onto Kevlar 49 Fiber Surface)

  • 김은영;강주영;최재혁;김한도
    • 한국염색가공학회지
    • /
    • 제7권1호
    • /
    • pp.43-50
    • /
    • 1995
  • The grafting of methacrylonitrile(MAN) onto Kevlar 49 filament surface was carried out by anionic polymerization using sodium methylsulfinylcarbanion formed from sodium hydride and dimethyl sulfoxide(DMSO). The effects of reaction conditions on the grafting percentage(GP) and on the tensile strength of the fiber were investgated. GP marktedly increased with increasing metalation time, and NaH concentration, polymerization temperature and time. The tensile strength of fiber decrased with increasing metalation time, and NaH concentration, polymerization temperature and time. The optimum conditions to increase over 40% of GP with below 10% reduction rate of tensile strength of fiber : NaH concentration ; 30.6 mmol/l/0.5g Kevlar, metalation time : 10min, polymerization tempera- ture : 5$0^{\circ}C$, polymerization time: 20 sec, monomer concentration : 1.12mol/l/0.5g Kevlar.

  • PDF

Low Temperature Suspension Polymerization of Methyl Methacrylate for the Preparation of High Molecular Weight Poly(methyl methacrylate)/Silver Nanocomposite Microspheres

  • Yeum, Jeong-Hyun;Ghim, Han-Do;Deng, Yulin
    • Fibers and Polymers
    • /
    • 제6권4호
    • /
    • pp.277-283
    • /
    • 2005
  • In order to prepare high molecular weight poly(methyl methacrylate) (PMMA)/silver nanocomposite microspheres, methyl methacrylate was suspension-polymerized in the presence of silver nanoparticles at low temperature with 2,2'-azobis(2,4-dimethylvaleronitrile) as an initiator. The rate of conversion was increased by increasing the initiator concentration. When silver nanoparticles were added, the rate of polymerization decreased slightly. High monomer conversion (about $85\%$) was obtained in spite of low polymerization temperature of $30^{\circ}C$. Under controlled conditions, PMMA/silver microspheres with various number-average degrees of polymerization (6,000-37,000) were prepared. Morphology studies revealed that except for normal suspension microspheres with a smooth surface, a golf ball-like appearance of the microspheres was observed, due to the migration and aggregation of the hydrophilic silver nanoparticles at the sublayer beneath the microsphere's surface.

Covalent Functionalization of Carbon Nanotubes using Atom Transfer Radical Polymerization

  • Paik, Hyun-Jong
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.196-197
    • /
    • 2006
  • Among various polymerization methods to graft polymers on the surface of CNTs, Atom Transfer Radical Polymerization (ATRP) has several advantages, such as a wide range of polymerizable monomers and superb control in molecular structure and weights. Several research groups including us have showed that ATRP is an efficient and versatile method to modify the surface of CNTs. Here, two independent approaches for the covalent attachment of polymers based on ATRP graft-from and graft-onto methods will be discussed.

  • PDF

총설 : 최신 잉크제트 인쇄기술 - UV 경화형 제트잉크 - (Review : The Advanced Inkjet Printing Technology - UV curable Jet Ink -)

  • 정경모;원종명;이용규;코세키 켄이치
    • 펄프종이기술
    • /
    • 제46권2호
    • /
    • pp.46-56
    • /
    • 2014
  • The aim of this reviews is to introduce the information concerning design of the UV-curable jet ink composition in order to provide a good adhesive property on non-porous surface. In order to clarify the viscosity dependence of flying speed for the UV curable jet ink, rheological analysis and observation of the flying state of the ink were carried out. The relationship between ink formulas and adhesive property on non-porous surface was investigated. It was examined the adhesive property of radical polymerization type UV curable jet ink included hydrogen abstraction type photo-initiator, it was expected that the strong adhesive strength can be obtained between the ink and non-porous surface in this study. UV curable jet ink with a slight amount of water was prepared. Optimum ratio of the cationic polymerization type UV curable jet ink shows an adequate adhesive strength towards two kinds of non-porous surface such as glass, poly(vinyl chloride) when tests were conducted on the ink jet-printing test machine.

Effect of Interface on the Properties of Polyamide 6/Carbon Nanotube Nanocomposites Prepared by In-situ Anionic Ring-opening Polymerization

  • Min, Jin Hong;Huh, Mongyoung;Yun, Seok Il
    • Composites Research
    • /
    • 제32권6호
    • /
    • pp.375-381
    • /
    • 2019
  • Multiwalled carbon nanotubes (MWCNTs) are covalently functionalized with isocyanates by directly reacting commercial hydroxyl functionalized MWCNTs with excess 4,4'-methylenebis (phenyl isocyanate) (MDI) and hexamethylene diiosocyanate (HDI). HDI-modified MWCNTs results in a higher surface isocyanate density than MDI-modified MWCNTs. Anionic ring-opening polymerization of ε-caprolactam is conducted using a sodium caprolactam initiator in combination with a di-functional hexamethylene-1,6-dicarbamoylcaprolactam activator in the presence of isocyanate functionalized MWCNTs. This polymerization proceeds in a highly efficient manner at relatively low reaction temperature (150℃) and short reaction times (10 min). During the polymerization, the isocyanate functionalized MWCNTs act not only as reinforcing fillers but also as second activators. Nanocomposites with HDI modified MWCNTs exhibit higher reinforcement and faster isothermal crystallization than MDI modified MWCNTs. The results show that PA6 chains grow more effectively from HDI modified MWCNT surface than from MDI modified MWCNT surface, resulting in stronger interaction between PA6 and MWCNTs.

Comparative Study of Physical Properties of Functional Ophthalmic Hydrogel Lens Using Photo and Thermal Polymerization

  • Kim, Duck-Hyun;Seok, Jae-Wuk;Sung, A-Young
    • 통합자연과학논문집
    • /
    • 제10권3호
    • /
    • pp.148-153
    • /
    • 2017
  • In this study, HEMA, MMA, AA, and EGDMA were used as basic combinations for manufacturing hydrophilic lenses for ophthalmic applications. In addition, AIBN (thermal polymerization initiator), 2H2M (photo polymerization initiator), and 3-hydroxypyridine (additive) were used to manufacture hydrophilic ophthalmic lenses through thermal polymerization and photo polymerization before their physical properties were measured. The results showed that when ophthalmic lenses were prepared via thermal polymerization and photo polymerization using 3-hydroxypyridine as an additive, their optical and physical properties and surface structures were different in each case, but they all satisfied the physical properties required for ophthalmic lenses.

코로나 방전처리와 그라프트 중합에 의한 카르복시산기의 기울기 표면 제조에 관한 연구 (Study on the Gradient Surface of Carboxylic Acid Group Using Corona Discharge Treatment and Subsequent Graft Polymerization)

  • 김형우;이문철;박병기
    • 한국염색가공학회지
    • /
    • 제6권2호
    • /
    • pp.17-23
    • /
    • 1994
  • Carboxylic acid group gradient surface where the density of carboxylic acid groups changes gradually along the sample length was prepared. Carboxylic acid group gradient surface was produced by the treatment of low density polyethylene sheet using a corona with gradually increasing power, followed by the grad polymerization of acrylic acid. The prepared gradient surface was characterized by the measurement of water contact angle, Fourier-transform infrared spectroscopy in the attenuated total reflectance mode, and electron spectroscopy for chemical analysis.

  • PDF

Uniform Grafting of Poly(1,5-dioxepan-2-one) by Surface-Initiated, Ring-Opening Polymerization

  • Yoon Kuk-Ro;Yoon Ok-Ja;Chi Young-Shik;Choi Insung-S.
    • Macromolecular Research
    • /
    • 제14권2호
    • /
    • pp.205-208
    • /
    • 2006
  • A polymeric film of a biodegradable poly(1,5-dioxepan-2-one) (PDXO) was formed on a gold surface by a combination of the formation of self-assembled monolayers (SAMs) presenting hydroxyl groups and the surface-initiated, ring-opening polymerization (SI-ROP) of 1,5-dioxepan-2-one (DXO). The SI-ROP of DXO was achieved by heating a mixture of $Sn(Oct)_2$, DXO, and the SAM-coated substrate in anhydrous toluene at $55^{\circ}C$. The resulting PDXO film was quite uniform. The PDXO film was characterized by polarized infrared external reflectance spectroscopy, X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, atomic force microscopy, ellipsometry, and contact angle goniometry.

플라즈마 에칭과 중합에 의한 탄소섬유의 표면 개질 (Plasma Etching and Polymerization of Carbon Fiber)

  • H. M. Kang;Kim, N. I.;T. H. Yoon
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.143-146
    • /
    • 2002
  • Unsized AS-4 carbon fibers were etched by RF plasma and then coated via plasma polymerization in order to enhance adhesion to vinyl ester resin. The gases utilized for the plasma etching were Ar, $N_2 and O_2$, while the monomers used for the plasma polymerization coating were acetylene, butadiene and acrylonitrile. The conditions for the plasma etching and the plasma polymerization were optimized by measuring interfacial adhesion with vinyl ester resin via micro-droplet tests. Among the treatment conditions, the combination of Ar plasma etching and acetylene plasma polymerization provided greatly improved interfacial shear strength (IFSS) of 69MPa compared to 43MPa with as-received carbon fiber. Based on the SEM analysis of failure surface and load-displacement curve, it was assume that the failure might be occurred at the carbon fiber and plasma polymer coating. The plasma etched and plasma polymer coated carbon fibers were subjected to analysis with SEM, XPS, FT-IR or Alpha-Step, and dynamic contact angles and tensile strengths were also evaluated. Plasma polymer coatings did not change tensile strength and surface roughness of fibers, but decreased water contact angle except butadiene plasma polymer coating, possibly owing to the functional groups introduced, as evidenced by FT-IR and XPS.

  • PDF