• 제목/요약/키워드: Surface pinning

검색결과 44건 처리시간 0.029초

Post Annealing Effects on Iron Oxide Nanoparticles Synthesized by Novel Hydrothermal Process

  • Kim, Ki-Chul;Kim, Young-Sung
    • Journal of Magnetics
    • /
    • 제15권4호
    • /
    • pp.179-184
    • /
    • 2010
  • We have investigated the effects of post annealing on iron oxide nanoparticles synthesized by the novel hydrothermal synthesis method with the $FeSO_4{\cdot}7H_2O$. To investigate the post annealing effect, the as-synthesized iron oxide nanoparticles were annealed at different temperatures in a vacuum chamber. The morphological, structural and magnetic properties of the iron oxide nanoparticles were investigated with high resolution X-ray powder diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Mossbauer spectroscopy, and vibrating sample magnetometer analysis. According to the XRD and HRTEM analysis results, as-synthesized iron oxide nanoparticles were only magnetite ($Fe_3O_4$) phase with face-centered cubic structure but post annealed iron oxide nanoparticles at $700^{\circ}C$ were mainly magnetite phase with trivial maghemite ($\gamma-Fe_2O_3$) phase which was induced in the post annealing treatment. The crystallinity of the iron oxide nanoparticles is enhanced by the post annealing treatment. The particle size of the as-synthesized iron oxide nanoparticles was about 5 nm and the particle shape was almost spherical. But the particle size of the post annealed iron oxide nanoparticles at $700^{\circ}C$ was around 25 nm and the particle shape was spherical and irregular. The as-synthesized iron oxide nanoparticles showed superparamagnetic behavior, but post annealed iron oxide nanoparticles at $700^{\circ}C$ did not show superparamagnetic behavior due to the increase of particle size by post annealing treatment. The saturation of magnetization of the as-synthesized nanoparticles, post annealed nanoparticles at $500^{\circ}C$, and post annealed nanoparticles at $700^{\circ}C$ was found to be 3.7 emu/g, 6.1 emu/g, and 7.5 emu/g, respectively. The much smaller saturation magnetization value than one of bulk magnetite can be attributed to spin disorder and/or spin canting, spin pinning at the nanoparticle surface.

황처리가 금속/InP Schootky 접촉과 $Si_3$$N_4$/InP 계면들에 미치는 영향 (Effects of sulfur treatments on metal/InP schottky contact and $Si_3$$N_4$/InP interfaces)

  • 허준;임한조;김충환;한일기;이정일;강광남
    • 전자공학회논문지A
    • /
    • 제31A권12호
    • /
    • pp.56-63
    • /
    • 1994
  • The effects of sulfur treatments on the barrier heithts of Schottky contacts and the interface-state density of metal-insulator-semiconductor (MIS) capacitors on InP have been investigated. Schottky contacts were formed by the evaporation of Al, Au, and Pt on n-InP substrate before and after (NH$_{4}$)$_{2}$S$_{x}$ treatments, respectively. The barrier height of InP Schottky contacts was measured by their current-voltage (I-V) and capacitance-voltage (C_V) characteristics. We observed that the barrier heights of Schottky contacks on bare InP were 0.35~0.45 eV nearly independent of the metal work function, which is known to be due to the surface Fermi level pinning. In the case of sulfur-treated Au/InP ar Pt/InP Schottky diodes, However, the barrier heights were not only increased above 0.7 eV but also highly dependent on the metal work function. We have also investigated effects of (NH$_{4}$)$_{2}$S$_{x}$ treatments on the distribution of interface states in Si$_{3}$N$_{4}$InP MIS diodes where Si$_{3}$N$_{4}$ was provided by plasma enhanced chemical vapor deposition (PECVD). The typical value of interface-state density extracted feom 1 MHz C-V curve of sulfur-treated SiN$_{x}$/InP MIS diodes was found to be the order of 5${\times}10^{10}cm^{2}eV^{1}$. This value is much lower than that of MiS diodes made on bare InP surface. It is certain, therefore, that the (NH$_{4}$)$_{2}$S$_{x}$ treatment is a very powerful tool to enhance the barrier heights of Au/n-InP and Pt/n-InP Schottky contacts and to reduce the density of interface states in SiN$_{x}$/InP MIS diode.

  • PDF

대면적 단결정 Gd1.5Ba2Cu3O7-y 벌크 초전도체의 초전도 특성 (Superconducting Properties of Large Single Grain Gd1.5Ba2Cu3O7-y Bulk Superconductors)

  • 김찬중;박승연;김광모;박순동;전병혁
    • 한국재료학회지
    • /
    • 제22권11호
    • /
    • pp.569-574
    • /
    • 2012
  • Large single grain $Gd_{1.5}Ba_2Cu_3O_{7-y}$ (Gd1.5) bulk superconductors were fabricated by a top-seeded melt growth (TSMG) process using an $NdBa_2Cu_3O_{7-y}$ seed. The seeded Gd1.5 powder compacts with a diameter of 50 mm were subjected to the heating cycles of a TSMG process. After the TSMG process, the diameter of the single grain Gd1.5 compact was reduced to 43 mm owing to the volume contraction during the heat treatment. The superconducting transition temperature ($T_c$) of the top surface of the single grain Gd1.5 sample was as high as 93.5 K. The critical current densities ($J_cs$) at 77 K and 1T and 1.5 T were in ranges of 25,200-43,900 $A/cm^2$ and 10,000-23,000 $A/cm^2$, respectively. The maximum attractive force at 77 K of the sample field-cooled using an Nd-B-Fe permanent magnet (surface magnetic field of 0. 527 T) was 108.3 N; the maximum repulsive force of the zero field-cooled sample was 262 N. The magnetic flux density of the sample field-cooled at 77 K was 0.311T, which is approximately 85% of the applied magnetic field of 0.375 T. Microstructure investigation showed that many $Gd_2BaCuO_5$ (Gd211) particles of a few ${\mu}m$ in size, which are flux pinning sites of Gd123, were trapped within the $GdBa_2Cu_3O_{7-y}$ (Gd123) grain; unreacted $Ba_3Cu_5O_8$ liquid and Gd211 particles were present near the edge regions of the single grain Gd1.5 bulk compact.

요철핀으로 보강된 복합재 모자형 체결부 구조의 강도 연구 (Pull-off Strength of Jagged Pin-reinforced Composite Hat Joints)

  • 곽병수;김동관;권진회
    • Composites Research
    • /
    • 제31권6호
    • /
    • pp.323-331
    • /
    • 2018
  • 스테인리스 강으로 제작된 요철핀의 보강이 복합재 모자형 체결부의 풀오프 강도에 미치는 영향을 시험으로 연구하였다. 요철핀에는 물리적, 화학적 표면처리를 수행하였고, 체결부의 외피와 보강재가 만나는 영역에 두께방향으로 핀을 삽입하였다. 모자형 체결부 시편은 요철핀을 포함하여 일체성형으로 제작하였다. 사용된 요철핀의 지름은 0.3, 0.5, 0.7 mm로 세 가지이다. 핀의 삽입밀도는 외피와 보강재가 만나는 면적 기준으로 0.5, 2.0% 두 가지이다. 요철핀과 일반핀의 효과를 비교하기 위하여 0.3 mm 일반핀을 2.0% 밀도로 삽입한 시편을 추가로 제작하여 시험을 수행하였다. 0.3, 0.5, 0.7 mm의 요철핀을 0.5%의 밀도로 삽입한 시편의 강도는 보강되지 않은 시편 대비 각각 45, 19, 9% 높게 나타났고, 2.0% 밀도의 경우 강도는 각각 127, 45, 11% 높게 나타났다. 시험 결과 지름이 동일할 경우 밀도가 높을수록, 밀도가 동일할 경우 지름이 작을수록 보강효과가 더 높게 나타나는 것을 알 수 있었다. 요철핀과 일반핀의 효과를 비교한 결과 2.0% 밀도로 0.3 mm 직경의 핀을 이용하여 보강할 경우, 요철핀 보강시편이 일반핀 보강 시편보다 64% 높은 강도를 보였다. 본 연구의 결과로부터 요철핀 보강이 복합재 모자형 체결부의 풀오프 강도 향상을 위한 효과적인 방법이 될 수 있음을 확인하였다.