• Title/Summary/Keyword: Surface navigation

Search Result 501, Processing Time 0.022 seconds

Introduction of Surface Current Measurement Based on X-band Radar (X-밴드 레이더 기반 표층해류 계측 기법 소개)

  • Na-Yun Kang;Jose Carlos Nieto-Borge;Young-Jun Yang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.424-425
    • /
    • 2022
  • This paper introduces X-band radar-based surface current measurement technique. A marine X-band radar used for navigation was installed at Sokcho Beach to collect surface current data in real time. Based on this, in order to verify the accuracy of the measurement of surface current (Current speed), the Korea Hydrographic and Oceanographic Agency Marine observation buoy compared it with the data. Data collected from January 2022 were compared and as a result the possibility of surface current(Current speed) measurement using radar confirmed.

  • PDF

A Design and Implementation of a Simulation System for Autonomous Navigation of Intelligent Ship (지능형 선박의 자율운항제어를 위한 시뮬레이션 시스템의 설계 및 구현)

  • Lee, Won-Ho;Kim, Chang-Min;Choi, Joong-Lak;Kang, Il-Kweon;Kim, Yong-Gi
    • The KIPS Transactions:PartB
    • /
    • v.10B no.4
    • /
    • pp.403-410
    • /
    • 2003
  • ANS (autonomous navigation system) is an expert system which builds navigation plans, understands the current environment, and controls a surface ship. The most ideal way to test ANS is available after it is installed into a real surface ship. however, it is impossible to implement into a real ship. since it costs too much to develop the hardware interfaces just for testing. The most appropriate way for testing is to develop a simulation system for a surface ship and apply it. A simulation system for a surface ship consists of two sub-systems : one is a ship movement simulation system to imitate the physical movement characteristics of the ship, and the other is an environmental objects simulation system to build up surroundings of the ship. In this paper, we design and develop a surface ship movement simulation system which imitates its physical movement characteristics by using a motion equation for surface ship.

Performance Comparisons between Command to Line-of-Sight Guidance Law and Proportional Navigation Guidance Law in Short Range Surface-to-Air Missile (단거리 지대공 유도무기에서의 시선지령식 유도법칙과 비례항법 유도법칙의 성능비교)

  • Lee, Yeon-Seok;Liu, Yue-Huan;Kim, Yang-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.273-278
    • /
    • 2007
  • In this paper, a performance comparison between CLOS(Command to Line-of-Sight) guidance law and PN(Proportional Navigation) guidance law is made, based on a short range surface-to-air missile simulation program called KNUCLOS. This simulation program has a full nonlinear aerodynamic missile model, a tracker model for missile and target, and target model. According to the simulation results, the PN guidance law has a better performance than CLOS guidance law under various target speed.

An Effective SLAM for Autonomous Mobile Robot Navigation in Irregular Surface using Redundant Extended Kalman Filter (추가적 확장 칼만 필터를 이용한 불규칙적인 바닥에서 자율 이동 로봇의 효율적인 SLAM)

  • Park, Jae-Yong;Choi, Jeong-Won;Lee, Suk-Gyu;Park, Ju-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.218-224
    • /
    • 2009
  • This paper proposes an effective SLAM based on redundant extended Kalman filter for robot navigation in an irregular surface to enhance the accuracy of robot's pose. To establish an accurate model of a caterpillar type robot is very difficult due to the mechanical complexity of the system which results in highly nonlinear behavior. In addition, for robot navigation on an irregular surface, its control suffers from the uncertain pose of the robot heading closely related to the condition of the floor. We show how this problem can be overcome by the proposed approach based on redundant extended Kalman filter through some computer simulation results.

Optimal Route Planning for Maritime Autonomous Surface Ships Using a Nonlinear Model Predictive Control

  • Daejeong Kim;Zhang Ming;Jeongbin Yim
    • Journal of Navigation and Port Research
    • /
    • v.47 no.2
    • /
    • pp.66-74
    • /
    • 2023
  • With the increase of interest in developing Maritime Autonomous Surface Ships (MASS), an optimal ship route planning is gradually gaining popularity as one of the important subsystems for autonomy of modern marine vessels. In the present paper, an optimal ship route planning model for MASS is proposed using a nonlinear MPC approach together with a nonlinear MMG model. Results drawn from this study demonstrated that the optimization problem for the ship route was successfully solved with satisfaction of the nonlinear dynamics of the ship and all constraints for the state and manipulated variables using the nonlinear MPC approach. Given that a route generation system capable of accounting for nonlinear dynamics of the ship and equality/inequality constraints is essential for achieving fully autonomous navigation at sea, it is expected that this paper will contribute to the field of autonomous vehicles by demonstrating the performance of the proposed optimal ship route planning model.

Development of Dual Mode (Autonomous and Remote Control) Unmanned Surface Vehicle

  • Kim, Hyo-Il;Jun, Seung-Hwan;Moon, Serng-Bae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.376-382
    • /
    • 2010
  • These days, a study on 'Unmanned Surface Vehicle (USV)' has made very active progress in many countries. Even if it is being expected that there will be a great demand of USV for wide field, such as military operation, private sector, and etc., the study of USV in Korea is still at an early stage. For this reason, we have made a very small USV which is composed of dual mode (autonomous and remote control). The TCP/IP communication is applied to the USV.

Multi-level DVS Guidance and Output-feedback Path-following Control for Marine Surface Vehicles

  • Deng, Ying-Jie;Im, Nam-kyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.256-257
    • /
    • 2018
  • This paper deals with the path-following control for marine surface vehicles with underactuated characteristics. In consideration of practical limitations of actuators, an improved DVS(dynamic virtual ship) guidance algorithm is proposed with the multi-level DVS optionally selected to be tracked. To address the output-feedback control issue, an adaptive FLS(fuzzy logical systems) is devised to online approximate the kinematic states. Based on that observing framework, the path-following control law is thereafter derived. Simulations testify effectiveness of the proposed scheme

  • PDF

VFH+ based Obstacle Avoidance using Monocular Vision of Unmanned Surface Vehicle (무인수상선의 단일 카메라를 이용한 VFH+ 기반 장애물 회피 기법)

  • Kim, Taejin;Choi, Jinwoo;Lee, Yeongjun;Choi, Hyun-Taek
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.426-430
    • /
    • 2016
  • Recently, many unmanned surface vehicles (USVs) have been developed and researched for various fields such as the military, environment, and robotics. In order to perform purpose specific tasks, common autonomous navigation technologies are needed. Obstacle avoidance is important for safe autonomous navigation. This paper describes a vector field histogram+ (VFH+) based obstacle avoidance method that uses the monocular vision of an unmanned surface vehicle. After creating a polar histogram using VFH+, an open space without the histogram is selected in the moving direction. Instead of distance sensor data, monocular vision data are used for make the polar histogram, which includes obstacle information. An object on the water is recognized as an obstacle because this method is for USV. The results of a simulation with sea images showed that we can verify a change in the moving direction according to the position of objects.

Simulation System Development for Verification of Autonomous Navigation Algorithm Considering Near Real-Time Maritime Traffic Information (준실시간 해상교통 정보를 반영한 자율운항 알고리즘 검증용 시뮬레이션 시스템 개발)

  • Hansol Park;Jungwook Han
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.6
    • /
    • pp.473-481
    • /
    • 2023
  • In this study, a simulation system was developed to verify autonomous navigation algorithm in complex maritime traffic areas. In particular, real-world maritime traffic scenario was applied by considering near real-time maritime traffic information provided by Korean e-Navigation service. For this, a navigation simulation system of Unmanned Surface Vehicle (USV) was integrated with an e-Navigation equipment, called Electronic Chart System (ECS). To verify autonomous navigation algorithm in the simulation system, initial conditions including initial position of an own ship and a set of paths for the ship to follow are assigned by an operator. Then, considering real-world maritime traffic information obtained from the service, the simulation is implemented in which the ship repeatedly travels by avoiding surrounding obstacles (e.g., approaching ships). In this paper, the developed simulation system and its application on verification of the autonomous navigation algorithm in complex maritime traffic areas are introduced.

Analysis of Surface Current Measurement Based on X-band Radar Image (X-밴드 레이더 이미지 기반 표층해류 계측 분석)

  • Na-Yun Kang;Yu-Kyung Lee;Young-Jun Yang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.323-324
    • /
    • 2022
  • This paper explains the comparison results of surface current measurement using X-band Radar image through analysis. Measurements were carried out from February 2022 using the X-band Radar for marin ships installed at Sokcho Beach. Based on the Korea Hydrographic and Oceanographic Agency ocean observation buoys, the accuracy of surface current(current speed) measurement was verified through comparison and analysis of measurement data.

  • PDF