• 제목/요약/키워드: Surface microstructure

검색결과 1,842건 처리시간 0.027초

A new mindlin FG plate model incorporating microstructure and surface energy effects

  • Mahmoud, F.F.;Shaat, M.
    • Structural Engineering and Mechanics
    • /
    • 제53권1호
    • /
    • pp.105-130
    • /
    • 2015
  • In this paper, the classical continuum mechanics is adopted and modified to be consistent with the unique behavior of micro/nano solids. At first, some kinematical principles are discussed to illustrate the effect of the discrete nature of the microstructure of micro/nano solids. The fundamental equations and relations of the modified couple stress theory are derived to illustrate the microstructural effects on nanostructures. Moreover, the effect of the material surface energy is incorporated into the modified continuum theory. Due to the reduced coordination of the surface atoms a residual stress field, namely surface pretension, is generated in the bulk structure of the continuum. The essential kinematical and kinetically relations of nano-continuums are derived and discussed. These essential relations are used to derive a size-dependent model for Mindlin functionally graded (FG) nano-plates. An analytical solution is derived to show the feasibility of the proposed size-dependent model. A parametric study is provided to express the effect of surface parameters and the effect of the microstructure couple stress on the bending behavior of a simply supported FG nano plate.

Glazing 횟수가 전장지르코니아에 미치는 굴곡강도와 표면 미세구조의 변화 (A study of the changes in the strength and microstructure of the zirconia crown surface by the glazing number)

  • 오선미
    • 대한치과기공학회지
    • /
    • 제43권2호
    • /
    • pp.35-41
    • /
    • 2021
  • Purpose: This study aimed to investigate the flexural strength and surface microstructure of the zirconia crown according to the number of glazing zirconia prostheses. Methods: The specimens were made as follows. A specimen without glazing: 1ea, first glazed specimens (group B): 10ea, second glazed specimens (group C): 10ea, third glazed specimens (group D): 10ea. Three-point measuring strength equipment and electron microscopes were used for strength measurement and microstructure observation. As for statistical analysis, one-way ANOVA and t-test (level of significance level=5%) were used to determine the difference in the change in flexural strength according to the number of glazing zirconia prostheses. Results: ANOVA analysis of groups B (1st glazing), C (2nd glazing), and D (3rd glazing) revealed that the change in strength between the groups is statistically significant (p=0.023). The Mann-Whitney test for each group revealed that the difference in flexural strength between groups B and C was not statistically significant (z=-0.302, p=0.762) while that between groups C and D was statistically significant (z=-0.257, p=0.01). Microstructure observation revealed 3 changes in the microstructure of the surface of the glaze powder were observed. Conclusion: According to the number of glazing zirconia prostheses, it was found that the difference in strength between groups was statistically significant, and changes in the microstructure were observed.

AA3004에서 전단변형 미세조직 및 집합조직의 형성 (Formation of Shear Texture and Microstructure in AA3004 Sheet)

  • 이강노;김종국;김훈동;황병복;허무영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.184-186
    • /
    • 2002
  • The evolution of texture and microstructure during warm rolling and subsequent annealing in aluminium 3004 alloy sheet was investigated by X-ray texture measurements and microstructure observations. Warm rolling at 250$^{\circ}C$ led to the development of strong through thickness texture gradients with shear textures at the surface layer and a regular rolling texture in the center of the sheets. FEM simulations indicated that these texture gradients are caused by pronounced strain gradients throughout the sheet thickness. Upon recrystallization annealing, in the sheet center the characteristic cube-recrystallization texture developed, while in the surface layers with a pronounced shear texture continuous recrystallization took place which led to the formation of a very fine grained microstructure. It is concluded that the very complex strain history in the near-surface layers together with the resulting high work-hardening rate gave rise to the formation of the ultra-fine grains with an average size smaller than 2$\mu\textrm{m}$.

  • PDF

아연도금층의 조직, 외관, 및 경도에 미치는 미량 금속첨가의 영향 (The Effect of Trace Metallic Additives on Microstructure, Surface Appearance and Hardness of Zn Electrodeposits)

  • 예길촌;김대영;안덕수
    • 한국표면공학회지
    • /
    • 제37권1호
    • /
    • pp.28-39
    • /
    • 2004
  • The effect of trace metallic additives on microstructure, surface appearance and hardness of zinc electrodeposits was investigated by using sulfate bath and flow cell system. The preferred orientation of Zn deposit with Fe additive was (103)(104)+(002) mixed texture and that of Zn deposits with both Fe-Ni and Fe-Co additives was (10 1), while Zn deposits with Fe-Cr additives had (002) preferred orientation. The surface morphology of the zinc deposits was closely related to the preferred orientation of the deposits. The glossiness of Zn deposit with Fe-Ni additives was higher than that of pure Zn deposit, while the glossiness of Zn deposits with both Fe-Co and Fe-Cr additives was lower than that of pure Zn deposit. The hardness of Zn deposits with both Fe-Ni and Fe-Co additives was noticeably higher than that of Zn-Fe deposit, while that of Zn deposit with Fe-Cr additives was similar to that of Zn-Fe deposit.

직물 미세구조의 3차원 표면 및 솔리드 형성 방법 (A Novel Method for 3D Surface and Solid Construction Analysis of Fabric Microstructure)

  • 이예진;이병철
    • 한국생활과학회지
    • /
    • 제21권3호
    • /
    • pp.539-550
    • /
    • 2012
  • In-depth knowledge of fabric microstructure is essential for understanding clothing comfort since it plays a significant role in heat and mass transfer between the human body and clothing. In this study, a novel method was employed for investigating 3D surfaces and solid construction characteristics of specific fabrics by using a reverse engineering technique. The surface construction data were obtained by a confocal laser scanning microscope and then manipulated by a 3D analysis program. Triangle mesh was used for connecting each 3D point, with clouds and fabric surface characteristics created by rendering techniques. For generating a 3D solid model, determinants of radius of curvature was used. According to the proposed method, actual surface expression of the real fabric was achieved successfully. The results from this methodology can be applied to the detailed analysis of clothing comfort that is highly influenced by the microstructure of the fabric.

소둔로에서 수욕으로 이송 중 발생한 표면 산화가 TWIP 강의 미세조직과 인장 성질에 미치는 영향 (The Effects of Surface Oxidation Occurring during Delivery from an Annealing Furnace to a Water Bath on the Microstructure and Tensile Properties of TWIP Steel)

  • 오선근;이영국
    • 열처리공학회지
    • /
    • 제33권2호
    • /
    • pp.57-64
    • /
    • 2020
  • In the present study, we investigated whether the surface oxidation of C-bearing TWIP steel ℃curs in the air during specimen delivery from an annealing furnace to a water bath and how the microstructure and tensile properties are influenced by surface oxidation. A cold-rolled Fe-18Mn-0.6 (wt%) steel was exposed in the air for 5 s after annealing at various temperatures (750℃, 850℃ and 1000℃) for 10 min in a vacuum, and then water-quenched. For comparison, another specimen, which had been quartz-sealed in a vacuum, was annealed at 1000℃ for 10 min and immediately water-quenched without exposure to air. The 750℃ and 850℃-annealed specimens and the quartz-sealed specimen showed a γ-austenite single phase in the entire specimen due to negligible surface oxidation. However, the 1000℃-annealed specimen exhibited a dual-phase microstructure consisting of ε-martensite and γ-austenite at the sub-surface due to decarburization. Whereas the specimens without decarburization revealed high elongations of 70-80%, the decarburized specimen exhibited a low elongation of ~40%, indicating premature failure due to cracking inside the decarburized layer with ε-martensite and γ-austenite.

경량 마그네슘 합금의 표면 신뢰성 향상을 위한 마찰교반공정의 적용 (Application of Friction Stir Process to Improve Surface Reliability of Light Weight Magnesium Alloy)

  • 길응찬;김재연;현창용
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제16권2호
    • /
    • pp.155-161
    • /
    • 2016
  • Purpose: Purpose of this study is to analyze the effect of particle size as well as number of pass on surface microstructure and hardness of SiC(p)/AZ31 surface composite fabricated by friction stir process (FSP). Method: SiC(p)/AZ31 surface composite containing different size of SiC particle (i. e., $2{\mu}m$ and $8{\mu}m$) was fabricated by multi-pass FSP. Microstructure was observed by scanning electron microscope and surface hardness was determined by Vickers hardness tester. Results: For all the FSPed specimens with and without hardening particles, grain size was refined due to dynamic recrystallization behavior. Surface hardness was observed to increase with decreasing particle size in the composite layer. Increasing number of FSP pass was effective for homogeneous distribution of the hardening particles and for resulting increase in surface hardness. Conclusion: FSP was effective to modify surface microstructure for improving surface hardness of SiC/AZ31 composite.

Negative bias voltage effect에 따른 Cr-Si-N 박막의 미세구조에 대한 연구 (Influence of negative bias voltage on the microstructure of Cr-Si-N films deposited by a hybrid system of AIP plus MS)

  • 신정호;김광호
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.130-131
    • /
    • 2009
  • AIP(arc ion plating)방법과 마그네슘 스퍼터링(DC reactive magnetron sputtering) 방법을 결합시킨 하이브리드 코팅 시스템으로 Cr-Si-N 코팅막을 합성하였다. 고분해능 TEM 및 SEM 분석들로부터 negative bias voltage에 따른 미세구조의 영향을 나타내었다. negative bias voltage의 증가에 따라 columnar microstructure가 amorphous microstructure로 변화하였다. bias voltage effect에 의해 Cr-Si-N 코팅막내 입자의 크기가 미세해지고 나노 복합체를 잘 형성하였다.

  • PDF

Negative bias voltage effect에 따른 CrN 박막의 미세구조에 대한 연구 (Influence of negative bias voltage on the microstructure of CrN films deposited by arc ion plating)

  • 신정호;김광호
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2009년도 추계학술대회 초록집
    • /
    • pp.159-160
    • /
    • 2009
  • AIP(arc ion plating)방법으로 CrN 코팅막을 합성하였다. 고분해능 SEM과 AFM 분석들로부터 negative bias voltage에 따른 미세구조의 영향을 나타내었다. negative bias voltage의 증가에 따라 columnar microstructure가 amorphous microstructure로 변화하였다. bias voltage effect에 의해 CrN 코팅막내 입자의 크기가 미세해지고 나노 복합체를 잘 형성하였다.

  • PDF

진공 증발법에 의해 제조된 플립 칩 본딩용 솔더의 미세 구조분석 (Microstructure Characterization of the Solders Deposited by Thermal Evaporation for Flip Chip Bonding)

  • 이충식;김영호;권오경;한학수;주관종;김동구
    • 한국표면공학회지
    • /
    • 제28권2호
    • /
    • pp.67-76
    • /
    • 1995
  • The microstructure of 95wt.%Pb/5wt.%Sn and 63wt.%Sn/37wt.%Pb solders for flip chip bonding process has been characterized. Solders were deposited by thermal evaporation and reflowed in the conventional furnace or by rapid thermal annealing(RTA) process. As-deposited films show columnar structure. The microstructure of furnace cooled 63Sn/37Pb solder shows typical lamellar form, but that of RTA treated solder has the structure showing an uniform dispersion of Pb-rich phase in Sn matrix. The grain size of 95Pb/5Sn solder reflowed in the furnace is about $5\mu\textrm{m}$, but the grain size of RTA treated solder is too small to be observed. The microstructure in 63Sn/37Pb solder bump shows the segregation of Pb phase in the Sn rich matrix regardless of reflowing method. The 63Sn/37Pb solder bump formed by RTA process shows more uniform microstructure. These result are related to the heat dissipation in the solder bump.

  • PDF