• 제목/요약/키워드: Surface microstructure

검색결과 1,846건 처리시간 0.024초

TFT-LCDs에 적용 가능한 Cu-Ag 박막에 대한 Mo 기판 위에서의 특성조사 (Characteristic of Cu-Ag Added Thin Film on Molybdenum Substrate for an Advanced Metallization Process)

  • 이현민;이재갑
    • 한국재료학회지
    • /
    • 제16권4호
    • /
    • pp.257-263
    • /
    • 2006
  • We have investigated the effect of silver added to Cu films on the microstructure evolution, resistivity, surface morphology, stress relaxation temperature, and adhesion properties of Cu(Ag) alloy thin films deposited on Mo glue layer upon annealing. In addition, pure Cu films deposited on Mo has been annealed and compared. The results show that the silver in Cu(Ag) thin films control the grain growth through the coarsening of its precipitates upon annealing at $300^{\circ}C{\sim}600^{\circ}C$ and the grain growth of Cu reveals the activation energy of 0.22 eV, approximately one third of activation energy for diffusion of Ag dopant along the grain boundaries in Cu matrix (0.75 eV). This indicates that the grain growth can be controlled by Ag diffusion along the grain boundaries. In addition, the grain growth can be a major contributor to the decreased resistivity of Cu(Ag) alloy thin films at the temperature of $300^{\circ}C{\sim}500^{\circ}C$, and decreases the resistivity of Cu(Ag) thin films to $1.96{\mu}{\Omega}-cm$ after annealing at $600^{\circ}C$. Furthermore, the addition of Ag increases the stress relaxation temperature of Cu(Ag) thin films, and thus leading to the enhanced resistance to the void formation, which starts at $300^{\circ}C$ in the pure Cu thin films. Moreover, Cu(Ag) thin films shows the increased adhesion properties, possibly resulting from the Ag segregating to the interface. Consequently, the Cu(Ag) thin films can be used as a metallization of advanced TFT-LCDs.

유성구볼밀을 이용한 La2O3-Gd2O3-ZrO2 계 서스펜션준비와 서스펜션 플라즈마용사를 이용한 (La1-xGdx)2Zr2O7 코팅증착과 특성 (Preparation of Suspension in La2O3-Gd2O3-ZrO2 System via Planetary Mill and Characteristics of (La1-xGdx)2Zr2O7 Coatings Fabricated via Suspension Plasma Spray)

  • 권창섭;이성민;오윤석;김형태;장병국;김성원
    • 한국분말재료학회지
    • /
    • 제20권6호
    • /
    • pp.453-459
    • /
    • 2013
  • Lanthanum/gadolinium zirconate coatings are deposited via suspension plasma spray with suspensions fabricated by a planetary mill and compared with hot-pressed samples via solid-state reaction. With increase in processing time of the planetary mill, the mean size and BET surface area change rapidly in the case of lanthanum oxide powder. By using suspensions of planetary-milled mixture between lanthanum or gadolinium oxide and nano zirconia, dense thick coatings with fully-developed pyrochlore phases are obtained. The possibilities of these SPS-prepared coatings for TBC application are also discussed.

폴리프로필렌섬유보강 시멘트 복합재료에 정착된 구조용 합성섬유의 부착거동에 미치는 섬유 혼입률의 효과 (Effect of Fiber Volume Fraction on Bond Properties of Structural Synthetic Fiber in Polypropylene Fiber Reinforced Cement Composites)

  • 이진형;박찬기
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권4호
    • /
    • pp.125-135
    • /
    • 2011
  • 폴리프로필렌섬유보강 시멘트 복합재료와 구조용 합성섬유의 부착특성을 평가하였다. 폴리프로필렌섬유는 0.10%, 0.15% 및 0.20%의 체적비로 적용하여 dog-bone 시험을 실시하였다. 구조용 합성섬유와 폴리프로필렌섬유보강 시멘트 복합재료 사이의 부착강도는 폴리프로필렌섬유의 혼입률이 증가할수록 증가하였으나 0.20% 이상이 되면 감소하였다. 또한 폴리프로필렌섬유의 첨가는 계면인성과 마찰저항을 증가시킨다. 인발시험 후 구조용 합성섬유 표면의 미소구조 분석은 폴리프로필렌섬유의 혼입률이 증가할수록 긁힘 현상이 증가하였다.

열간가공 공구강에 형성된 침질탄화층의 잔류응력 측정 (Measurements of Residual Stress in Nitrocarburised Layer Formed in Hot Work Tool Steel)

  • 오도원;박기원;이준범;이상윤
    • 열처리공학회지
    • /
    • 제11권4호
    • /
    • pp.305-314
    • /
    • 1998
  • This study has been performed to investigate into some effects of various amounts of $CO_2$ and CO gas added to the $50%NH_3-N_2$ based gas atmosphere on microstructure, hardness, chemical analysis and residual stress in the compound and diffusion layer of AISI H13 treated by gaseous nitrocarburising process. The compound layer formed in the surface is composed of mainly ${\varepsilon}-Fe_3$(N,C) and small amount of ${\gamma}^{\prime}-Fe_4N$ and cementite. The maximum hardness value obtainable from H13 steel is shown to be 1200 Hv and the effecvtive hardening depth increases with increasing CO content from 1% to 4%. In the case of CO content over 4%, however, it decreases with increasing CO content. The composition profiles of nitrogen and carbon are found to be within the ${\varepsilon}$-phase field located above the ${\varepsilon}+{\gamma}^{\prime}$ phase field in the Fe-N-C diagram. It is shown that the maximum value of compressive residual stress of H13 steel treated in atmospheres of $50%NH_3-(2,4)%CO_2-N_2-CO$ gas mixture is $48kg/mm^2$ and the depth to which residual stress is in Compressive state is $90{\mu}m$ for the atmosphere $50%NH_3-45%N_2-4%CO_2-1%CO$ gas mixture. It is consequently important to control the maximum value and size of compressive residual stress region in order to obtain desirable mechanical properties.

  • PDF

반도체 소자용 구리 배선 형성을 위한 전해 도금 (Electrodeposition for the Fabrication of Copper Interconnection in Semiconductor Devices)

  • 김명준;김재정
    • Korean Chemical Engineering Research
    • /
    • 제52권1호
    • /
    • pp.26-39
    • /
    • 2014
  • 전자 소자의 구리 금속 배선은 전해 도금을 포함한 다마신 공정을 통해 형성한다. 본 총설에서는 배선 형성을 위한 구리 전해 도금 및 수퍼필링 메카니즘에 대해 다루고자 한다. 수퍼필링 기술은 전해 도금의 전해질에 포함된 유기 첨가제의 영향에 의한 결과이며, 이는 유기 첨가제의 표면 덮임율을 조절하여 웨이퍼 위에 형성된 패턴의 바닥 면에서의 전해 도금 속도를 선택적으로 높임으로써 가능하다. 소자의 집적도를 높이기 위해 금속 배선의 크기는 계속적으로 감소하여 현재 그 폭이 수십 nm 수준으로 줄어들었다. 이러한 배선 폭의 감소는 구리 배선의 전기적 특성 감소, 신뢰성의 저하, 그리고 수퍼필링의 어려움 등 여러 가지 문제를 야기하고 있다. 본 총설에서는 상기 기술한 문제점을 해결하기 위해 구리의 미세 구조 개선을 위한 첨가제의 개발, 펄스 및 펄스-리벌스 전해 도금의 적용, 고 신뢰성 배선 형성을 위한 구리 기반 합금의 수퍼필링, 그리고 수퍼필링 특성 향상에 관한 다양한 연구를 소개한다.

The Influence of Sintering Atmosphere on the Reduction Behaviour of Refractory Bricks and the Basic Properties of $UO_{2}$ Pellet

  • Lee, Seung-Jae;Kim, Kyu-Tae;Chung, Bum-Jin
    • The Korean Journal of Ceramics
    • /
    • 제4권4호
    • /
    • pp.279-285
    • /
    • 1998
  • The $UO_2$ pellets are usually sintered under hydrogen gas atmosphere. Hydrogen gas may cause unexpected early failure of the refractory bricks in the sintering furnace. In this work, nitrogen was mixed with hydrogen to investigate the effect of nitrogen gas on a failure machanism of the refractory bricks and on the microstructure of the $UO_2$ pellet. The hydrogen-nitrogen mixed gas experiments show that the larger nitrogen the mixed gas contains, the less the refractory materials are reduced by hydrogen. The weight loss measurements at $1400^{\circ}C$ for fire clay and chamotte refractories containing high content of $SiO_2$ indicate that the weight loss rate for the mixed gas is about half of that for the hydrogen gas. Based on the thermochemical analyses, it is proposed that the weight loss is caused by hydrogen-induced reduction of free $SiO_2$ and/or $SiO_2$ bonded to $Al_2O_3$ in the fire clay and chamotte refractories. However, the retardation of the hydrogen-induced $SiO_2$ reduction rate under the mixed gas atmosphere may be due to the reduction of the surface reaction rate between hydrogen gas and refractory materials in proportion to volume fraction of nitrogen gas in the mixed gas. On the other hand, the mixed gas experiments show that the test data for $UO_2$ pellet still meet the related specification values, even if there exists a slight difference in the pellet microstructural parameters between the cases of the mixed gas and the hydrogen gas.

  • PDF

다공질유리의 탄소 열적환원반응에 의한 Sialon의 합성에 관한 연구 (Synthesis of Sialon by Carbothermal Reduction of Porous Glass)

  • 김병호;이덕열;김왕섭;전형우;이근헌
    • 한국세라믹학회지
    • /
    • 제26권6호
    • /
    • pp.771-782
    • /
    • 1989
  • Synthesis of $\beta$-Sialon powder was attempted with carbothermal reduction of porous glass. The porous glass was prepared by heat and hydrothermal treatments of 9.32 Li2O.46.5B2O3.37.2SiO2.6.98Al2O3 glass. Carbon pyrolyzed from propane gas was deposited on the porous glass, thereafter activated carbon was added as reducing agents. The synthesized $\beta$-Sialon powder was pressureless sintered at 175$0^{\circ}C$ for 1hr in N2 atmosphere. The characterization of the $\beta$-Sialon powder was performed with XRD, BET, SEM and particle size analysis. The sinterability and mechanical properties of the sintered bodies were investigated in terms of bulk density, M.O.R., fracture toughness, morphology of microstructure and etc. The reduction effect of deposited carbon was better than that of activated carbon mechanically added. The formation of SiC was precominant over that of Si2ON2 and $\beta$-Sialon owing to low partial pressure of N2 inside the pore, wehreas on the surface of porous glass the formation of Si2ON2 and $\beta$-Sialon were predominant. Thereafter, SiC reduced unreacted glass to be $\beta$-Sialon. Single phase of $\beta$-Sialon(Z=1.92) was obtained from PGA porous glass having the largest pore radius by the simultaneous reduction and nitridation method at 145$0^{\circ}C$ for 5hrs. The bulk density, M.O.R., and KIC of the sitered body are 3.17g/cc, 434.4MPa and 4.1MPa.m1/2, respectively.

  • PDF

R.F. 마그네트론 스퍼터링을 이용한 LiCoO2 양극활물질의 Ar 증착분압에 따른 박막전지 전극 특성 (Electrode Properties of Thin Film Battery with LiCoO2 Cathode Deposited by R.F. Magnetron Sputtering at Various Ar Partial Pressures)

  • 박호영;임영창;최규길;이기창;박기백;권미연;조성백;남상철
    • 전기화학회지
    • /
    • 제8권1호
    • /
    • pp.37-41
    • /
    • 2005
  • Ar공정 분압에 따라 스퍼터링된 $LiCoO_2$박막 양극의 $400^{\circ}C$저온 열처리를 통한 전기화학적 및 미세구조적 특성을 연구하였다. Ar분압이 변화함에 따라 양극 박막의 미세구조 및 조성이 변화하였으며, Ar분압이 증가할수록 $LiCoO_2$ 박막의 안정성 및 전기화학적 특성이 개선되었다. 순환전류전위법 및 정전류 충방전 시험에 의해 전극반응의 가역성 및 안정성 등을 고찰하였으며, 박막의 조성, 결정성, 표면 특성 등 물리적 특성은 ICP-AES, XRD, SEM 및 AFM을 통해 분석하였다.

Coercivity Enhancement of Sintered Nd-Fe-B Magnets by Grain Boundary Diffusion with DyH3 Nanoparticles

  • Liu, W.Q.;Chang, C.;Yue, M.;Yang, J.S.;Zhang, D.T.;Liu, Y.Q.;Zhang, J.X.;Yi, X.F.;Chen, J.W.
    • Journal of Magnetics
    • /
    • 제18권4호
    • /
    • pp.400-404
    • /
    • 2013
  • Grain boundary diffusion technique with $DyH_3$ nanoparticles was applied to fabricate Dy-less sintered Nd-Fe-B permanent magnets with high coercivity. The magnetic properties and microstructure of magnets were systematically studied. The coercivity and remanence of grain boundary diffusion magnet were improved by 60% and reduced by 7% compared with those of the original magnet, respectively. Meanwhile, both the remanence temperature coefficient (${\alpha}$) and the coercivity temperature coefficient (${\beta}$) of the magnets were improved after diffusion treatment. Investigation shows that Dy is preferentially enriched as (Nd, Dy)$_2Fe_{14}B$ phase in the surface region of the $Nd_2Fe_{14}B$ matrix grains indicated by the remarkable enhancement of the magneto-crystalline anisotropy field of the magnet. As a result, the magnet diffused with a small amount of Dy nanoparticles possesses enhanced coercivity without remarkably sacrificing its magnetization.

발전소용 이중보온용 강관의 홈부식(Grooving Corrosion)에 의한 파손 분석 (The Failure Analysis of Double Pipe for Insulation Used Power Plant by Grooving Corrosion)

  • 함종오;박기덕;박성진;선일식
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제15권3호
    • /
    • pp.197-206
    • /
    • 2015
  • Failure analysis of pre-insulated pipe (SPPS 380, 400A) transporting high temperature water ($95{\sim}110^{\circ}C$) for a plant was carried out. The damaged area (${\Phi}5mm$) of pre-insulated pipe was found only on welds. The chemical composition of damaged pipe meets specification of carbon steel pipes for pressure service (KS D 3562). As results of microstructure analysis, crack propagated from outer to inside after pitting corrosion occurred on the outside surface. The non-metallic inclusion existed on the end of crack. And the non-metallic inclusion continuously and linearly formed along with the bond line of welds. Based on SEM-EDS analysis, the nonmetallic inclusions have higher Manganese (Mn) and Oxygen (O) content but sulfur (S) was not detected. As results of water quality analysis, hydrogen ion concentration and minerals like Fe, Mg, Si were in low level. But the content of dissolved oxygen (11.2 ppm) was slightly higher than that of standard. It seems that the cause of damaged pipe is grooving corrosion due to MnO inclusion formed on bond line and corrosion took place nearby welds.