• 제목/요약/키워드: Surface layer strength

검색결과 724건 처리시간 0.028초

DLC 코팅한 Fe-3.0%Ni-0.7%Cr-1.4%Mn-X강의 표면특성평가 (Characterization of DLC Coated Surface of Fe-3.0%Ni-0.7%Cr-1.4%Mn-X Steel)

  • 장재철;김송희
    • 한국표면공학회지
    • /
    • 제47권1호
    • /
    • pp.13-19
    • /
    • 2014
  • The various surface treated conditions of Fe-3.0%Ni-0.7%Cr-1.4%Mn-X steel such as as-received, ion nitriding, DLC coated, DLC coated after nitriding for 3 hrs and 6 hrs were investigated to evaluate the beneficial effect for plastic mold steel. Micro Vickers hardness tester was used to estimate nitriding depth from the hardness profile and to measure hardness on the surface. Elastic modulus and residual stress were measured by a nanoindentator. Scratch test and SP (small ball punch test) were utilized to assess the adhesive strength of DLC coating. The depth of nitriding layer was measured as $50{\mu}m$ for the condition of 3 hrs nitriding and $90{\mu}m$ for that of 6 hrs nitriding. Hardness, elastic modulus, residual stress of DLC coating were 20.37 GPa, 162.78 GPa and -1456 MPa respectively. Residual stress on the surface of DLC coating after nitriding could increase to -3914 MPa by introducing nitriding before DLC coating. During the 'Ball-On-Disc' test ${\gamma}^{\prime}$ particles pulled out from the surface of nitrized layer tend to enhance abrasive wear mode since the fraction of ${\gamma}^{\prime}$ (Fe4N) in ion-nitrized layer is known to increases with nitriding time. Thus the specific wear rate of the nitriding layer increased. Comparing with nitriding the specific wear rate in work piece disc as well as ball decreased prominently in DLC coating due to the remarkable reduction in friction coefficient.

플라스틱칩 결체(結締) 톱밥보드의 기계적(機械的) 및 물리적(物理的) 성질(性質)에 관(關)한 연구(硏究) (A Study on the Mechanical and Physical Properties of Sawdustboard combined with Plastic Chip)

  • 이필우;서진석
    • Journal of the Korean Wood Science and Technology
    • /
    • 제15권3호
    • /
    • pp.44-55
    • /
    • 1987
  • In order to study the effect of sawdustboard combined with plastic chips, 0.5mm($T_1$), 1mm($T_2$), 1.4mm($T_3$) thick nylon fiber. polypropylene rope fiber(RP), and 0.23mm thick moth-proof polypropylene net fiber(NP) were cut into 0.5, 1, 2cm long plastic chips. Thereafter, sawdustboard combined with plastic chips prepared as the above and plastic non-combined sawdustboard(control) were manufactured into 3 types of one-, two-, and three layer with 5 or 10% combination level. By the discussions and results at this study, the significant conclusions of mechanical and physical properties were summarized as follows: 1. The MORs were shown in the order of 3 layer> 2 layer> 1 layer among plastic non-combined boards, and $T_3$ < $T_2$ < $T_1$ < RP (NP(5%) < NP(l0%) among plastic combined boards. In 2cm long plastic chip in 1 layer board, the highest strength through all the composition was recognized. 1 layer board showing the lower strength with 0.5cm plastic chip rendered to the bending strength improvement by 2 or 3 layer board composition. On the other hand, 2 or 3 layer combined with 1, 2cm long polypropylene net fiber chips incurred MOR's conspicuous decrease requiring optimum plastic chip combined level and consideration to combined type. 2. MOE in plastic non-combined 3 layer board exhibited sandwich construction effect by higher resin content application to surface layer in the order of 3layer>1layer>2layer with the highest stiffness of the board combined with polypropylene chip, while nylon chip-combined board had little difference from plastic non-combined board. In relevant to length and layer effect, 3 layer board combined with the 0.5cm long polypropylene net fiber chip in 5% and 10% combined level presented 34-43% and 44-76% stiffness increase against plastic non-combined board(control), respectively. Moreover, in 1 layer board, 30% stiffness increase with 10% against 5% combined level in the 1 and 2cm long polypropylene net fiber chip was obtained. 3. Stress at proportional limit(Spl) showing the fiber relationship (r: 0.81-0.97) between MOR presented in the order of 1 layer<2 layer<3 layer in plastic non-combined board. Correspondingly, combined effect by layer and plastic chip length was similar to MOR's. 4. Differently from previous properties(MOR, MOE, Spl). work to maximum load(Wml) of 2 layer board approached to that of 3 layer board. Conforming the above phenomenon. 2 layer combined with 0.5cm long polypropylene net fiber chip kept the greater work than 1 layer. The polypropylene combined board superior to nylon -and plastic non - combined board seemed to have greater anti - failing capacity. 5. Internal bond strength(IB), in contrast to MOR's tendency. showed in the order of T1

  • PDF

정밀가공면의 소성스트레인 측정을 위한 새로운 기법의 개발 (A New Technique Development for Measuring Plastic Strain of Precision Machined Surface)

  • 김태영;반야풍;문상돈
    • 한국정밀공학회지
    • /
    • 제15권4호
    • /
    • pp.141-147
    • /
    • 1998
  • A plastically deformed layer in the precision machined surface affects in various forms the physical properties of machined components such as the fatigue strength, the dimensional instability, microcracks and the stress corrosion cracking. These physical properties, so called surface integrity, are very important for designing highly stressed and critically loaded components. Typical plastic strains in the precision machined surface are very difficult to measure, since they are located within a very short distance from the surface and they change very rapidly. A new way is suggested to determine the residual strain in plastically deformed materials by analyzing the plastically deformed layer after a subsequent recrystallization process. This investigation is to explore a new technique for measuring plastic strain in machining applications, and in particular, to and the effect of cutting parameters(rake angle, depth of cut, specific cutting energy), on the plastic strains and strain energy.

  • PDF

Al 도금 HPF 강판과 전기아연도금 TRIP 강판의 저항 점 용접 시 연속타점 전극의 수명에 미치는 도금층의 영향 (Effect of Coating Layer on Electrode Life for Resistance Spot Welding of Al-Coated Hpf and Zn-Coated Trip Steels)

  • 손종우;서종덕;김동철;박영도
    • Corrosion Science and Technology
    • /
    • 제11권1호
    • /
    • pp.29-36
    • /
    • 2012
  • The resistance spot welding of high strength steel degrades the weldability because of its high strength with rich chemical composition and coating layer to protect from corrosion. During the each resistance welding process the electrodes tip reacts with coating layer, then subsequently deteriorates and shorten electrode life. In this study, the Al-coated HPF (Hot Press Forming) steels and Zn-coated TRIP steels were used to investigate the electrode life for resistance spot welding. Experimental results show that the reactivity of Al-coating on HPF steels to electrode tip surface behaviors different from the conventional Zn-coated high strength steels. The electrode tip diameter and nugget size in electrode life test of Al-coated HPF steels are observed to be constant with respect to weld numbers. For Al-coated HPF steels, the hard aluminum oxide layer being formed during high temperature heat treatment process reduces reactivity with copper electrode during the resistance welding process. Eventually, the electrode life in resistance spot welding of Al-coated HPF steels has the advantage over the galvanized steel sheets.

알루미나에 코팅된 불화물 생체유리에의 수산화 아파타이트 형성 (Hydroxyapatite Formation on Fluoride Bioactive Glasses coated on Alumina)

  • 안현수;이은성;김철영
    • 한국세라믹학회지
    • /
    • 제36권10호
    • /
    • pp.1087-1093
    • /
    • 1999
  • Bioglass which is one of the surface active bionmaterials has a good biocompatibility but a poor mechanical strength, In the present work therefore two types of fluoride-containing bioglasses were coated on an alumina to improve mechanical strength. Crystallization of the coating layer and the hydroxyapatite formation on the bioactive glass coatings in tris-buffer solution were studied. When bioactive glass coated alumina was heat-treated Na2CaSi3O8 crystal was formed on the layer at lower temperature while wollastonite(CaSIO3) was obtained at higher temperature. Hydroxyapatite forming rate on the coating layer with Na2CaSi3O8 crystal was delayed with SiO2 contents in glass composition. However the hydroxyapatite was developed in 20minutes regardless SiO2 contents when the coating layer crystallized into wollastonite. More amount of P3+ ions were leached out of the coating layer with wollastonite than that with Na2CaSi3O8 crystal while Na+ and Ca2+ ions were leached out more easily from the Na2CaSi3O8 crystal containing coating layer.

  • PDF

The Development of High Contact Fatigue Strength P/M Sprocket for the Silent Chain System

  • Yamanishi, Yuuji;Tsutsui, Tadayuki;Ishii, Kei
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.142-143
    • /
    • 2006
  • Recently, automotive engines have changed to the silent chain system in order to reduce noise and to improve reliability. High contact fatigue strength is needed for the sprockets of silent chain system. As a result, a high-contact-fatigue-strength P/M material was developed using the technology of surface rolling, which densifies the surface layer of sintered parts. It was established that the contact fatigue strength of the developed material was a great improvement over that of the conventionally used sintered material.

  • PDF

도재소부용 금합금에서 인듐, 주석 첨가가 금속-도재계면 특성에 미치는 영향 (Effects of Indium and Tin on Interfacial Property of Porcelain Fused to Low Gold Alloys)

  • 남상용;곽동주;정석민
    • 대한치과기공학회지
    • /
    • 제23권1호
    • /
    • pp.31-43
    • /
    • 2001
  • This study was performed to observe the micro-structure change of surface, behavior of oxide change of element, the component transformation of the alloy and the bonding strength between the porcelain interface in order to investigate effects of indium, tin on interfacial properties of porcelain fused to low gold alloy. Hardness of castings was measured with a micro-Vicker's hardness tester. The compositional change of the surface of heat-treated specimen was analyzed with an EDS and an EPMA. The interfacial shear bonding strength between alloy specimen and fused porcelain was measured with a mechanical testing system(MTS 858.20). The results were as follows: 1) The hardness value of alloy increased as increasing amount of indium addition. 2) The formation of oxidation increased as increasing indium and tin contents after heat treatment. 3) Diffusion of indium and tin elements increased as increasing indium and tin contents in metal-porcelain surface after porcelain fused to metal firing. 4) The most interfacial shear bonding strength was increased as increasing a composition of adding elements, and a heat-treatment time, and an oxygen partial pressure. From the results of this study it was found that the addition of alloying elements such as indium and tin increase hardness of as-cast alloy, produce surface oxide layer of adding elements by heat-treatment which may improve interfacial bonding strength between alloy and porcelain.

  • PDF

콘크리트제품의 동결저항성에 관한 실험적 연구 (Experimental Study on the Frost Resistance of Concete Product)

  • ;;이상훈
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2011년도 정기 학술발표대회
    • /
    • pp.91-91
    • /
    • 2011
  • The quality of the surface layer in concrete structures plays an important role in the durability of the concrete. The concrete factory products are made as they improve the appearance of the surface and compressive strength in need. A common criterion to judge the quality of concrete products frequently seen in our daily life appears to be "beauty" in terms of consistent shaping. However, as for most concrete curb in such areas where a large amount of anti-freezing agents(NaCl) and ice and snow melting agents(CaCl2) are spread over roads to ensure road safety during the winter season, since deterioration advances from the surface, scaling is seen on the surface concrete due to deterioration which combined freezing damage and salt damage. Especially, In cold northern districts, the spreading amount of deicing salts increases by regulation of studded tire use, and the scaling of the concrete products, the various parts of concrete structures for roads is increasing in recent years. In this study, L-shape concrete curb were targeted, the permeable form method with the commercial permeable sheet was applied to it and the improvements of the quality were examined. By the permeable form method, surface layers got strengthened, which prevented permeation of the deterioration factor from the outside, and the scaling resistance of the upper surface where the permeable sheet was applied improved exceedingly. It will be expected by applying the permeable form method to various concrete products that frost resistance improves and scaling damage decreases.

  • PDF

설파민산 니켈-코발트 합금도금 박막 물성에 대한 실험 연구 (A Study on Properties of Electrodeposited Nickel-Cobalt Alloy Films from Sulfamate Solution)

  • 구석본;전준미;이창면;허진영;이홍기
    • 한국표면공학회지
    • /
    • 제50권1호
    • /
    • pp.24-28
    • /
    • 2017
  • The electrodeposition of Ni-Co alloy from a sulfamate bath was investigated. The cobalt content in the Ni-Co deposits is more influenced by the temperature or stirring effect than the current density in the process parameters. As cobalt contents in the Ni-Co deposited layer increased from 0 wt.% up to 43 wt.%, hardness value of the layer rised from 400 Hv up to 700 Hv and crystal orientation (111) increased. However, (200) and crystal size significantly reduced. The tensile and yield strength also increased, while the modulus of elasticity showed the maximum value of $10.4N/mm^2$ at 29 wt.%.

레이저를 이용한 크롬카바이드 플라즈마 용사층의 특성향상 (LASER CONSOLIDATION OF THE PLASMA COATED CHROME CARBIDE LAYER)

  • 안희석;이창희
    • 한국재료학회지
    • /
    • 제7권3호
    • /
    • pp.203-212
    • /
    • 1997
  • This paper evaluated the feasibility of laser consolidation for improving the properties of the plasma coated layer, Further, the mechanim of the degradation sequence of the chrome carbide layer applied on the turbine blades was postualted. The laser consolidation could be successfully applied for improcing the surface properties of the plasma coated blade, if a proper condition was carefully chosen. The consolidated layer had erosion & corrosion resistance and vond strength superiro to those of the as-plasma coated layer. The properties of the consolidated layer were strongly dependent upon the degree of dilution, especially on the Fe pickup from the substrate. The degradation of the plasma coating layer was thought to be a reault of the repeating action of the solid particle erosion, corrosion penetration through the pores and oxide films formed along the interlayer surface and impact spalling.

  • PDF