• 제목/요약/키워드: Surface layer strength

검색결과 727건 처리시간 0.033초

표면마무리를 위한 Sn-2.5Cu 합금 도금막의 특성 (Characteristics of Electroplated Sn-2.5Cu Alloy Layers for Surface Finishing)

  • 김주연;배규식
    • 한국재료학회지
    • /
    • 제13권2호
    • /
    • pp.133-136
    • /
    • 2003
  • Sn-2.5Cu alloy layers were deposited on the Alloy 42 lead-frame substrates by the electroplating method, and their microstructures, adhesion strength, and electrical resistivity were measured to evaluate the applicability of Sn-Cu alloy as a surface finishing material of electronic parts. The Sn-2.5Cu layers were electroplated in the granular form, and composed of pure Sn and Cu$_{6}$Sn$_{5}$ intermetallic compound. Surfaces of the electroplated Sn-2.5Cu layers were rather rough and also the thickness variance was large. The adhesion strength of the Sn-2.5Cu electroplated layers was highly comparable to that of the electroplated Cu alloy layer and the electrical conductivity was about 10 times higher than the pure Sn. After the 20$0^{\circ}C$ 30 min. annealing of the electroplated Sn-2.5Cu layers, the surface roughness was reduced, and adhesion strength and conductivity were improved. These results showed the Sn-Cu alloys can be used as an excellent surface finishing material.ial.

THIN FILM ADHESION IN Cu/Cr/POLYIMIDE AND Cu/Cu-Cr/POLYIMIDE SYSTEMS

  • Joh, Cheol-Ho;Kim, Young-Ho;Oh, Tae-Sung;Park, Ik-Sung;Yu, Jin
    • 한국표면공학회지
    • /
    • 제29권5호
    • /
    • pp.379-385
    • /
    • 1996
  • Adhesion of Cu/Cr and Cu/$Cu_xCr_{1-x}$ thin films onto polyimide substrates has been studied. For an adhesion layer, Cr or Cu-Cr alloy films were deposited onto polyimide using DC magnetron sputtering machine. Then Cu was sputter-deposited and finally, Cu was electroplated. Adhesion was evaluated using $90^{\circ}C$ peel test or T-peel test. Plastic deformation of the peeled metal layer was qualitatively measured using XRD technique. It is confirmed that high interfacial fracture energy and large plastic deformation are important to enhance the peel adhesion strength. High peel strength is obtained when the interface is strongly bonded. More ductile film has higher peel strength. In Cu-Cr alloy films, opposite effects of the Cr addition in the alloy film on the peel strength are operative: a beneficial effect of strong interfacial bonding and a negative effect of smaller plastic deformation.

  • PDF

실링이 플라즈마 스프레이 코팅된 알루미나 코팅재의 내부식성에 미치는 영향 (Effect of Sealing on the Corrosion Resistance of Plasma-Sprayed Alumina Coatings)

  • 권의표;김세웅;이종권
    • 한국재료학회지
    • /
    • 제32권10호
    • /
    • pp.442-447
    • /
    • 2022
  • Sealing treatment is a post-surface treatment of the plasma spray coating process to improve the corrosion resistance of the coating material. In this study, the effect of the sealing on the corrosion resistance and adhesive strength of the plasma spray-coated alumina coatings was analyzed. For sealing, an epoxy resin was applied to the surface of the coated specimen using a brush. The coated specimen was subjected to a salt spray test for up to 48 hours and microstructural analysis revealed that corrosion in the coating layer/base material interface was suppressed due to the resin sealing. Measurement of the adhesive strength of the specimens subjected to the salt spray test indicated that the adhesive strength of the sealed specimens remained higher than that of the unsealed specimens. In conclusion, the resin sealing treatment for the plasma spray-coated alumina coatings is an effective method for suppressing corrosion in the coating layer/base material interface and maintaining high adhesive strength.

AZ31 마그네슘 합금의 플라즈마 전해 산화에서 Sodium Aluminate 농도가 산화막 특성에 미치는 영향 (Effect of Sodium Aluminate Concentration in Electrolyte on the Properties of Anodic Films Formed on AZ31 Mg Alloy by Plasma Electrolytic Oxidation)

  • 이종석;백홍구;김성완
    • 열처리공학회지
    • /
    • 제25권5호
    • /
    • pp.227-232
    • /
    • 2012
  • Magnesium alloy have good physical properties such as good castability, good vibration absorption, high strength/weight ratios. Despite the desirable properties, the poor resistance of Mg alloy impedes their use in many various applications. Therefore, magnesium alloy require surface treatment to improve hardness, corrosion and wear resistance. Plasma Electrolytic Oxidation (PEO) is one the surface treatment methods to form oxide layer on Mg alloy in alkali electrolyte. In comparison with Anodizing, there is environmental process having higher hardness and faster deposition rate. In this study, the characteristics of oxide film were examined after coating the AZ31 Mg alloy through the PEO process. We changed concentration of sodium aluminate into $K_2ZrF_6$, KF base electrolyte. The morphologies of the coating layer were characterized by using scanning electron microscopy (SEM). Corrosion resistance also investigated by potentiodynamic polarization analysis. As a result, propertiy of oxide layer were changed by concentration of sodium aluminate. Increasing with concentration of sodium aluminate in electrolyte, the oxidation layer was denser and the pore size was smaller on the surface.

Ion Beam-based Surface Modification of Polyimide Films for Adhesion Improvement with Deposited Metal Layer

  • Cho, Hwang-Woo;Jung, Chan-Hee;Hwang, In-Tae;Choi, Jae-Hak;Nho, Young-Chang
    • 방사선산업학회지
    • /
    • 제4권4호
    • /
    • pp.335-339
    • /
    • 2010
  • In this study, the surface of polyimide (PI) films was modified using ion implantation to enhance its adhesion to a deposited copper (Cu) layer. The surfaces of the PI films were implanted with 150 keV $Xe^+$ ions at fluences varying from $1{\times}10^{14}$ to $1{\time}10^{16}ions\;cm^{-2}$. The Cu layers were then deposited on the implanted PI. The surface properties of the implanted PI film were investigated based on the contact angle measurements, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Furthermore, the adhesive strength between the deposited Cu layer and PI film was estimated through a scratch test using a nanoindenter. As a result, the surface environment of the PI film was changed by the ion implantation, which could have a significant effect on the adhesion between the deposited Cu layer and the PI.

Polymer Layer Effects on Anchoring Strength and Surface Ordering in NLC, 5CB, by the Washing Process after Rubbing on the Polyimide Surfaces

  • Lee, Sang-Keuk;Han, Jeong-Min;Hwang, Jeoung-Yeon;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • 제4권2호
    • /
    • pp.5-9
    • /
    • 2003
  • The liquid crystal (LC) aligning capabilities by the washing processes after rubbing on the two kinds of the rubbed polyimide (Pl) surface were studied. The polar anchoring energy of 4-n-pentyl-4'-cyanobiphenyl (5CB) increased with the rubbing strength RS on the two kinds of the rubbed PI surface. The polar anchoring energy of 5CB on the rubbed PI surface with alkyl side chains is larger than the rubbed PI surface with CONH moiety. Also, the surface ordering of 5CB on the rubbed PI surface with alkyl side chains is larger than the rubbed PI surface with CONH moiety. Therefore, the surface ordering of 5CB strongly depends on the polymers and washing process.

Polymer Layer Effects on Anchoring Strength and Surface Ordering in NLC, 5CB, by the Washing Process after Rubbing on the Polyimide Surfaces

  • 이상극;이준웅;한정민;황정연;서대식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.506-509
    • /
    • 2003
  • The liquid crystal (LC) aligning capabilities by the washing processes after rubbing on the two kinds of the rubbed polyimide (PI) surface were studied. The polar anchoring energy of 4-n-pentyl-4'-cyanobiphenyl (5CB) increased with the rubbing strength RS on the two kinds of the rubbed PI surface. The polar anchoring energy of 5CB on the rubbed PI surface with alkyl side chains is larger than the rubbed PI surface with CONH moiety. Also, the surface ordering of 5CB on the rubbed PI surface with alkyl side chains is larger than the rubbed PI surface with CONH moiety. Therefore, the surface ordering of 5CB strongly depends on the polymers and washing process.

  • PDF

Smear layer 제거와 금속 이온 처리가 광중합형 글라스아이오노머와 상아질간의 결합강도에 미치는 영향 (Effect of various cleaners and mordants to bond strength of light curing glass ionomer cements to dentin)

  • 이원섭;박상진
    • Restorative Dentistry and Endodontics
    • /
    • 제19권1호
    • /
    • pp.45-63
    • /
    • 1994
  • 128 freshly extracted human molars were used to study the interaction between dentinal smear layer removal with various agents, and the shear bond strength of a light cured glass ionomer cement to dentin. It was proposed that the removal of smear layers using acidic cleaners followed by incorporation of Fe mordant with dentin could enhanced the infiltration of monomer component in light curing glass ionomer cement and resulted in a high bond strength. For the first treatment process for removal of smear layers on the surfaces of dentin, 50 % citric acid, 10% maleic acid and 10 % phosphoric acid were used, and for the second treatment process, 15% ferric chloride, 6.8% ferric oxalate or 30% potassium oxalate were used. Distilled water was used as a control. After double sequential treatment on dentin, a light curing glass ionomer cement was bonded to dentin. After being immersed in water at 31'C for 24 hours, shear bond strengths were measured Instron testing machine(Model No.4202, USA). Surface changes were also observed using SEM (Hitachi, S-2300, Japan) after treatment process with each agents. The following conclusions were drawn : 1. Dentin surface cleaned with maleic acid and treated with ferric oxalate showed the highest bond strength with light curing glass ionomer cement. 2. Bond strengths of glass ionomer cement to dentin treated with maleic acid or citric acid were the highest, and that treated with phosphoric acid showed the lowest. 3. The effect of ferric oxalate on shear bond strength to dentin was always higher than that of ferric chloride. 4. The smear layers were clearly removed and the orifices of dentinal tubules were opened widely by the citric acid, maleic acid and phosphoric acid. 5. The orifices of dentinal tubules opened after using the first solution were closed with the treatment of ferric chloride. 6. The precipitate like crystals were formed on dentin surfaces and tubules, but a significant decrease in bond strength of glass ionomer cement to dentin surface treated with potassium oxalate.

  • PDF

암종에 따른 토사와 암반 경계면의 마찰각 변화 특성에 관한 연구 (A Study on Friction Angle of Rock-Soil Contacts for Rock Type)

  • 이수곤;임창호
    • 한국환경복원기술학회지
    • /
    • 제5권3호
    • /
    • pp.9-14
    • /
    • 2002
  • It is common that the soil layer is few meters below the earth surface and there are rock masses below the soil layer in the view of geological characteristics in Korea. The boundary between rock and soil is clearly divided. When dealing with the stability of rock masses, as in the case of rock slopes or dam foundations, the majority of the collapses is not within the soil layer, but within the soil-rock boundary. Therefore, it is important to identify the shear strength characteristics between soil-rock contacts. It has been common practice to assume that the strength of the soil or shale represents the minimum strength present. However, it has been suggested by Patton(1968) that such an assumption may not be valid and that lower shear strengths might be obtained along the soil-rock interface than for either material alone. Then, in this thesis, introduce rock and residual soil shear strength tests and the specimen preparation and testing procedures are described in detail and also the testing results are presented and discussed.

Free Surface Vortex in a Rotating Barrel with Rods of Different Heights

  • Zhang, Xiaoyue;Zhang, Min;Chen, Wanyu;Yang, Fan;Guo, Xueyan
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권4호
    • /
    • pp.325-331
    • /
    • 2016
  • A bathtub vortex above the outlet of a rotating barrel is simulated. By analyzing the Ekman layer theory, it can be found that the main flow circulation is inversely proportional to the thickness of Ekman layer. The thicker the Ekman boundary layer, the weaker the rotational strength and the shorter of the length of gas core is. According to this law, models of barriers with rods of different heights are established. The reduction of air-core length in this air entrainment vortex and weakening the strength of rotation field were achieved.