• Title/Summary/Keyword: Surface impedance

Search Result 752, Processing Time 0.028 seconds

Development of Hybrid Sol-Gel Coating to Prevent Corrosion of Magnesium Alloys (마그네슘 합금의 방청을 위한 하이브리드 졸-겔 코팅제의 개발)

  • Lee, Dong Uk;Kim, Young Hoon;Moon, Myung Jun
    • Corrosion Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.30-36
    • /
    • 2018
  • The high rate of corrosion of magnesium alloys makes it limited for industrial applications. Therefore, surface treatment is required to enhance their corrosion resistance. In our study, a chemical conversion coating for protecting the corrosion of the magnesium alloy, AZ31B, was prepared by using a phosphate-permanganate solution. The chemical conversion coating had a limited protection ability due to defects arising from cracks and pores in the coating layer. The sol-gel coating was prepared by using trimethoxymethylsilane (MTMS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) as precursors, and aluminum acetyl acetonate as a ring opening agent. The corrosion protection properties of sol-gel and conversion coatings in 0.35wt% NaCl solution were measured by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization test. The EIS results indicated that the resistance of the chemical conversion coating with the sol-gel coating was significantly improved through the sol-gel sealed phosphate-permanganate conversion coating. The results of the potentiodynamic polarization test revealed that the sol-gel coating decreased the corrosion current density ($I_{corr}$). The SEM image showed that the sol-gel coating sealed conversion coating and improved corrosion protection.

Highly Efficient Cold Sputtered Iridium Oxide Films for Polyimide based Neural Stimulation Electrodes

  • Kim, Shin-Ae;Kim, Eui-Tae;Kim, Sung-June
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.3
    • /
    • pp.199-204
    • /
    • 2009
  • Iridium oxide films (IROFs) have been extensively studied as a material for electrical stimulation of neurons, as iridium oxide has higher charge storage capacity than other metal films. More recently, sputtered iridium oxide film (SIROF) has been studied, because it can be made more conveniently than activated iridium oxide film (AIROF). Typically, the SIROFs are grown at temperatures from 400 to 600 $^{\circ}C$. However, such high temperatures cannot be used when the iridium oxide (IrOx) film is to be deposited on a flexible polymer material, such as polyimide. In this paper, we show that we can still obtain excellent characteristics in SIROFs grown without heating (cold SIROF), by optimizing the growth conditions. We show that the oxygen flow rate is a critical parameter for controlling the surface properties of a cold SIROF. At an oxygen flow rate of 12 seem, the cold SIROF exhibited a charge storage capacity (CSC) of 60 mC/cm$^2$, which is comparable to or better than other published values for iridium oxide films including heated SIROFs. The film produced under these conditions also had the minimum impedance value of all cold SIROFs deposited for this study. A stability test and biocompatibility test also demonstrated the superiority of the optimized cold SIROF.

LiMnBO3/C: A Potential Cathode Material for Lithium Batteries

  • Aravindan, V.;Karthikeyan, K.;Amaresh, S.;Lee, Y.S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1506-1508
    • /
    • 2010
  • $LiMnBO_3$ was successfully synthesized by a solid-state reaction method both with and without a carbon coating. Adipic acid was used as source material for the carbon coating. $LiMnBO_3$ was composed of many small polycrystalline particles with a size of about 50 - 70 nm, which showed a very even particle morphology and highly ordered crystalline particulates. Whereas the carbon coated $LiMnBO_3$ was well covered by mat-like, fine material consisting of amorphous carbon derived from the carbonization of adipic acid during the synthetic process. Carbon coated cell exhibited improved and stable discharge capacity profile over the untreated. Two cells delivered an initial discharge capacity of 111 and 58 mAh/g for $LiMnBO_3$/C and $LiMnBO_3$, respectively. Carbon coating on the surface of the $LiMnBO_3$ drastically improved discharge capacity due to the improved electric conductivity in the $LiMnBO_3$ material.

Surface Coating and Electrochemical Properties of LiNi0.8Co0.15Al0.05O2 Polyaniline Composites as an Electrode for Li-ion Batteries

  • Chung, Young-Min;Ryu, Kwang-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1733-1737
    • /
    • 2009
  • A new cathode material based on Li$Ni_{0.8}Co_{0.15}Al_{0.05}O_2$ (LNCA)/polyaniline (Pani) composite was prepared by in situ self-stabilized dispersion polymerization in the presence of LNCA. The materials were characterized by fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Electrochemical properties including galvanostatic charge-discharge ability, cyclic voltammetry (CV), capacity, cycling performance, and AC impedance were measured. The synthesized LNCA/Pani had a similar particle size to LNCA and exhibited good electrochemical properties at a high C rate. Pani (the emeraldine salt form) interacts with metal-oxide particles to generate good connectivity. This material shows good reversibility for Li insertion in discharge cycles when used as the electrode of lithium ion batteries. Therefore, the Pani coating is beneficial for stabilizing the structure and reducing the resistance of the LNCA. In particular, the LNCA/Pani material has advantageous electrochemical properties.

Electrochemical Behavior of Lithium Titanium oxide/activated Carbon Composite for Electrochemical Capacitor

  • Yang, Jeong-Jin;Kim, Hong-Il;Yuk, Young-Jae;Kim, Han-Joo;Park, Soo-Gil
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.63-68
    • /
    • 2010
  • The $Li_4Ti_5O_{12}$/AC composite was prepared by sol-gel process with ultrasonication. The prepared composite was characterized by SEM, XRD and TG analysis, and their electrochemical behaviors were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and charge-discharge test in 1M $LiBF_4$/PC electrolyte. From the results, the $Li_4Ti_5O_{12}$ particles coated on AC surface had an average particle size of 100 nm and showed spinel-framework structure. When the potential range of the $Li_4Ti_5O_{12}$/AC composite was extended from 0.1 to 2.5 V, redox peaks and electric double layer property were revealed. The initial discharge capacity of $Li_4Ti_5O_{12}$/AC composite was 218 mAh $g^{-1}$ at 1 C. The enhancement of discharge capacity was attributed to electric double layer of added activated carbon.

Effect of Pt Layers on the Photoelectrochemical Properties and Stability of a Copper Oxide/n-Si Electrode (Copper oxide/n-Si 전극의 광전기화학 변환 특성과 안정성에 미치는 Pt 층의 영향)

  • 윤기현;홍석건;강동헌
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.3
    • /
    • pp.263-270
    • /
    • 2000
  • The Pt/copper oxide/n-Si electrodes were fabricated by depositing copper oxide thin film of 500${\AA}$ and very thin Pt layer on the n-type (100) Si substrate. hotoelectrochemical properties and stability profiles of the electrodes were investigated as a function of deposition time of Pt layer. As the deposition time of Pt layer increased up to 10 seconds, the photocurrent and quantum efficiency were increased and then decreased with further depositing time. The better cell stability was observed for the electrode with longer deposition time. The improvements in above photoelectrochemical properties indicate that Pt layer acts as a catalyst layer at electrode/electrolyte interface as well as a protective layer. The decreasing tendency of the photocurrent and efficiency for the electrode with Pt layer deposited above 20 seconds was explained as an increases in probbility of electron-hole pair recombination and also the absorbing photon loss at electrode surface due to the excessive thickness of Pt layer. The results were confirmed by impedance spectroscopy, mutiple cycle voltammograms and microstructural analyses.

  • PDF

Improvement of Heat Resistance for Union Type SMD Inductor Core (일체형 SMD INDUCTOR CORE의 내열 특성 개선)

  • Kim, S.J.;Kim, K.J.;Oh, Y.C.;Shin, C.G.;Cho, C.N.;Lee, D.G.;Kim, J.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04b
    • /
    • pp.6-7
    • /
    • 2008
  • The purpose of this study was to investigate heat resistance for union type SMD inductor core. The samples was produced with process 5 step. In this study, it analysis heat resistance of SMD(Surface Mounted Device) inductor core and it get electric field only exist inside of SMD core. Therefore electric fields do not affect any device and equipments. These results are very important to design data acquisition system(several test equipments such as temperature, impedance, and current test), because data acquisition system can place under the SMD Inductor core. So, it can be decrease their test error due to electric field.

  • PDF

Effect of β-Blocker Inhibitors on Aluminum Corrosion (알루미늄 부식에 대한 베타-차단제 억제제 효과)

  • Fouda, A. S.;El-Ewady, G. Y.;Shalabi, K.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.268-278
    • /
    • 2011
  • Corrosion of aluminum in 0.1 M HCl solution in the absence and presence of ${\beta}$-blocker inhibitors (atenolol, propranolol, timolol and nadolol) was investigated using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The inhibition efficiency increased with inhibitor concentration and decreased with rise of temperature. Potentiodynamic polarization curves revealed that they acted as cathodic inhibitors. Some thermodynamic parameters were calculated and discussed. All inhibitors were adsorbed on Al surface obeying Frumkin isotherm. All EIS tests exhibited one capacitive loop which indicates that the corrosion reaction is controlled by charge transfer process. The inhibition efficiencies of all test methods were in good agreement.

Ginger Extract as Green Corrosion Inhibitor for Steel in Sulfide Polluted Salt Water

  • Fouda, Abd El-Aziz S.;Nazeer, Ahmed Abdel;Ibrahim, Mohamed;Fakih, Mohamed
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.2
    • /
    • pp.272-278
    • /
    • 2013
  • Extract of ginger has been evaluated as a green inhibitor for the corrosion of steel in sulfide polluted NaCl solution using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and electrochemical frequency modulation (EFM) techniques. Potentiodynamic polarization measurements showed that this extract acts as a mixed type inhibitor but mainly inhibits the cathodic reaction. The inhibition efficiency was found to increase with inhibitor concentration reaching to approximately 83.9% using 250 ppm of ginger. Nyquist plots show a single capacitive loop in uninhibited and inhibited solutions. From EFM the causality factors are very close to theoretical values which indicate that the measured data are of good quality. The adsorption process of the studied extract on steel surface obeys Temkin adsorption isotherm. The results obtained from the different electrochemical techniques were in good agreement which prove the validity of these tools in measurement of corrosion rate. Ginger extract has no effect on Escherichia Coli and can be applied safely on waste water treatment plants.

Properties of Working Electrodes with Diamond Blends in Dye Sensitized Solar Cells

  • Choi, Minkyoung;Noh, Yunyoung;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.384-388
    • /
    • 2015
  • We prepared blocking layers by adding 0.0 ~ 0.6 wt% nano diamond blends (DBs) to $TiO_2$ blocking layers to improve the energy conversion efficiencies (ECEs) of dye sensitized solar cells (DSSCs). TEM and micro-Raman spectroscopy were used to characterize the microstructure and phases of DBs, respectively. Optical microscopy and FE-SEM were used to analyze the microstructure of the $TiO_2$ blocking layer with DBs. UV-VIS-NIR spectroscopy was used to determine the absorbance of the working electrodes. A solar simulator and a potentiostat were used to determine the photovoltaic properties and the impedance of the DSSCs with DBs. From the results of the DBs analysis, we determined a 6.97 nm combination of nano diamonds and graphite. We confirmed that ECE increased from 5.64 to 6.48 % when the added DBs increased from 0.0 to 0.2 wt%. This indicates that the effective surface area and electron mobility increased when DBs were added to the $TiO_2$ blocking layer. Our results indicate that the ECE of DSSCs can be enhanced by adding an appropriate amount of DBs to the $TiO_2$ blocking layers.