• Title/Summary/Keyword: Surface impedance

Search Result 752, Processing Time 0.027 seconds

Electrochemical Studies and Chemical Synthesis of Nanoscale YSZ Electrolyte Powder for Solid Oxide Fuel Cell (고체산화물 연료전지용 나노 YSZ전해질 분말 합성 및 단위셀의 전기화학적 평가)

  • Shin, Yu-Cheol;Kim, Young-Mi;Kim, Ho-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.299-302
    • /
    • 2009
  • Oxygen ionic conductors of YSZ electrolyte in SOFC unit cell are applied to anode and cathode as well as electrolyte to have triple-phase-boundaries(TPB) of electrochemical reaction, and it is required to decrease the sintering temperature of anode-supported electrolyte by the nanoscale of YSZ powder.In this report, nanoscale YSZ powder was synthesized by the chemical co-precipitation method. The particle size, surface area and morphology of the powder were observed by SEM and BET. Thin film electrolyte of under 10㎛ was fabricated by tape casting using the synthesized YSZ powder, and ionic conductivity and gas permiability of electrolyte film were evaluated. Finally, the SOFC unit cell was fabricated using the anode-supported electrolyte prepared by a tape casting method and co-sintering. Electrochemical evauations of the SOFC unit cell, including measurements such as power density and impedance, were performed and analyzed.

  • PDF

Electrochemical studies of nano-scale solid electrolyte powder prepared by chemical synthesis process (화학적합성법에 의한 나노 고체 전해질 분말 합성 및 전기화학적 평가)

  • Kim, Young-Mi;Shin, Yu-Cheol;Kim, Ho-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.295-298
    • /
    • 2009
  • Oxygen ionic conductors of CeScSZ electrolyte in SOFC unit cell are applied to anode and cathode as well as electrolyte to have the triple-phase-boundaries of electrochemical reaction, and it is required to decrease the sintering temperature of anode-supported electrolyte by the nanoscale of CeScSZ electrolyte powder. In this report, nanoscale CeScSZ electrolyte powder was synthesized by chemical synthesis method. The particle size, surface area and morphology of the powder were observed by SEM and BET. Thin film electrolyte of under $10{\mu}m$ was fabricated by tape casting using the synthesized CeScSZ electrolyte powder, and ionic conductivity and gas permeability of electrolyte film were evaluated. Finally the SOFC unit cell was fabricated using the anode-supported electrolyte prepared by a tape casting method and co-sintering, in which the active layer, measuring $20{\mu}m$, was introduced in the anode layer to provide a more efficient reaction. Electrochemical evaluations of the SOFC unit cell, including measurements such as power density and impedance, were performed and analyzed.

  • PDF

Study on high performance cathode on YSZ electrolyte for intermediate-temperature solid oxide fuel cells(IT-SOFC) (중온형 고체산화물 연료전지를 위한 YSZ 전해질에서의 고성능 공기극 연구)

  • Lee, Chang-Bo;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.368-371
    • /
    • 2006
  • [ $La_{0.8}Sr_{0.2}Co_{1-x}Mn_xO_3$ ] cathode as a high performance cathode on YSZ electrolyte was studied by analyzing impedance spectra. It was shown that cathode property of $La_{0.8}Sr_{0.2}Co_{1-x}Mn_xO_3$ is bet ter than that of$La_{0.8}Sr_{0.2}CoO_3$. At $700^{\circ}C$ in air environment, $La_{0.8}Sr_{0.2}Co_{0.4}Mn_{0.6}O_3$ cathode on CGO- layered YSZ electrolyte showed very low area specific resistance of $0.14{\Omega}cm^2$, which is low enough for intermediate-temperature sol id oxide fuel cells. This is because material properties of ionic conductivity and thermal expansion compatibility with electrolyte were optimized. Judging from activation energy and oxygen part i al pressure dependance of cathode property, it was noted that oxygen surface exchange kinetics is dominantly influential on cathode property in higher temperature region than $700^{\circ}C$ and oxygen self-diffusion in cathode material is more influential in lower temperature region.

  • PDF

Electric power generation from sediment microbial fuel cells with graphite rod array anode

  • Wang, Zejie;Lim, Bongsu
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.238-242
    • /
    • 2020
  • Sediment microbial fuel cells (SMFCs) illustrated great potential for powering environmental sensors and bioremediation of sediments. In the present study, array anodes for SMFCs were fabricated with graphite rods as anode material and stainless steel plate as electric current collector to make it inconvenient to in situ settle down and not feasible for large-scale application. The results demonstrated that maximum power of 89.4 ㎼ was obtained from three graphite rods, twice of 43.3 ㎼ for two graphite rods. Electrochemical impedance spectroscopy revealed that three graphite rods resulted in anodic resistance of 61.2 Ω, relative to 76.0 Ω of two graphite rods. It was probably caused by the parallel connection of the graphite rods, as well as more biomass which could reduce the charge transfer resistance of the biofilm anode. The presently designed array configuration possesses the advantages of easy to enlarge the surface area, decrease in anodic resistance because of the parallel connection of each graphite rod, and convenience to berry into sediment by gravity. Therefore, the as prepared array node would be an effective method to fabricate large-scale SMFC and make it easy to in situ applicate in natural sediments.

GPS/GLONASS Microstrip Active Antenna Apply to Curve Surface (곡면에 부착 가능한 GPS/GLONASS 마이크로스트립 능동 안테나)

  • Kim, Mi-Suk;Son, Seok-Bo;Joo, Hahn-Kie;Bae, Joon-Sung;Kim, Joon-O
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • In this paper, dual-feed circularly polarized microstrip patch antenna for GPS L1, GPS L2, GLONASS L1 signal was fabricated by using stacked patch. It was fed by dual coaxial probe on the patch at 50ohm impedance, and was simulated to resonate at GPS L1, GPS L2, GLONASS L1. To realize characteristics of right hand circular polarization using dual-feed stacked patch antenna and hybrid coupler for $90^{\circ}$ phase difference. Output of hybrid coupler was contacted input of Low Noise Amplifier(LNA). The LNA using dual band pass filter was designed and fabricated. The measured results of the implemented antenna is VSWR < 1.5 : 1 and the gain of 32dB(Zenith) over at GPS L1, L2, GLONASS L1.

Study on Real-time Parallel Processing Simulator for Performance Analysis of Missiles (유도탄 성능분석을 위한 실시간 병렬처리 시뮬레이터 연구)

  • Kim Byeong-Moon;Jung Soon-Key
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.84-91
    • /
    • 2005
  • In this paper, we describe the real-time parallel processing simulator developed for the use of performance analysis of rolling missiles. The real-time parallel processing simulator developed here consists of seeker emulator generating infrared image signal on aircraft, real-time computer, host computer, system unit, and actual equipments such as auto-pilot processor and seeker processor. Software is developed from mathematic models, 6 degree-of-freedom module, aerodynamic module which are resided in real-time computer, and graphic user interface program resided in host computer. The real-time computer consists of six TIC-40 processors connected in parallel. The seeker emulator is designed by using analog circuits coupled with mechanical equipments. The system unit provides interface function to match impedance between the components and processes very small electrical signals. Also real launch unit of missiles is interfaced to simulator through system unit. In order to apply the real-time parallel processing simulator to performance analysis equipment of rolling missiles it is essential to perform the performance verification test of simulator.

Anticorrosion Coatings Obtained by Plasma Electrolytic Oxidation on Implant Metals and Alloys

  • Sinebryukhov, S.L.;Gnedenkov, S.V.;Khrisanfova, O.A.;Puz', A.V.;Egorkin, V.S.;Zavidnaya, A.G.
    • Corrosion Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.91-100
    • /
    • 2018
  • Development of biodegradable implants for treatment of complex bone fractures has recently become one of the priority areas in biomedical materials research. Multifunctional corrosion resistant and bioactive coatings containing hydroxyapatite $Ca_{10}(PO_4)_6(OH)_2$ and magnesium oxide MgO were obtained on Mg-Mn-Ce magnesium alloy by plasma electrolytic oxidation. The phase and elemental composition, morphology, and anticorrosion properties of the coatings were investigated by scanning electron microscopy, energy dispersive spectroscopy, potentiodynamic polarization, and electrochemical impedance spectroscopy. The PEO-layers were post-treated using superdispersed polytetrafluoroethylene powder. The duplex treatment considerably reduced the corrosion rate (>4 orders of magnitude) of the magnesium alloy. The use of composite coatings in inducing bioactivity and controlling the corrosion degradation of resorbable Mg implants are considered promising. We also applied the plasma electrolytic oxidation method for the formation of the composite bioinert coatings on the titanium nickelide surface in order to improve its electrochemical properties and to change the morphological structure. It was shown that formed coatings significantly reduced the quantity of nickel ions released into the organism.

Synergistic Inhibition of Carbon Steel Corrosion by Inhibitor-Blends in Chloride - Containing Simulated Cooling Water

  • Shaban, Abdul;Felhosi, Ilona;Vastag, Gyongyi
    • Corrosion Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.91-99
    • /
    • 2017
  • The objective of this work was to develop efficient synergistic inhibitor combinations comprising sodium nitrite ($NaNO_2$) and an inhibitor-blend code named (SN-50), keeping in view of their application in industrial cooling water systems. The electrochemical characteristics of the carbon steel working electrode in simulated cooling water (SCW), without and with the addition of different combinations of the inhibitors, were investigated using electrochemical impedance spectroscopy (EIS), open circuit potential (OCP). The electrode surface changes were followed by visual characterization methods. It was demonstrated in this study that all the combinations of the inhibitors exhibited synergistic benefit and higher inhibition efficiencies than did either of the individual inhibitors. The addition of SN-50 inhibitor to the SCW shifted the OCP to more anodic values and increased the polarization resistance ($R_p$) values of carbon steel at all applied concentrations. The higher the applied sodium nitrite concentration (in the protection concentration range), the higher the obtained $R_p$ values and the inhibition efficiency improved by increasing the inhibitor concentration.

Development of $YSZ/La_0.85S_r0.15MnO_3$ Composite Electrodes for Solid Oxide Fuel Cells (고체산화물 연료전지용 $YSZ/La_0.85S_r0.15MnO_3$계 복합전극의 개발)

  • 윤성필;현상훈;김승구;남석우;홍성안
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.982-990
    • /
    • 1999
  • YSZ/LSM composite cathode was fabricated by dip-coating of YSZ sol on the internal pore surface of a LSM cathode followed by sintering at low temperature (800-100$0^{\circ}C$) The YSZ coating significantly increased the TPB(Triple Phase Boundary) where the gas the electrode and the electrolyte were in contact with each other. Sinter the formation of resistive materials such as La2Zr2O7 or SrZrO3 was prevented due to the low processing temperature and TPB was increased due to the YSZ film coating the electrode resistance (Rel) was reduced about 100 times compared to non-modified cathode. From the analysis of a.c impedance it was shown that microstructural change of the cathode caused by YSZ film coating affected the oxygen reduction reaction. In the case of non-modified cathode the RDS (rate determining step) was electrode reactions rather than mass transfer or the oxygen gas diffusion in the experimental conditions employed in this study ($600^{\circ}C$-100$0^{\circ}C$ and 0,01-1 atm of Po2) for the YSZ film coated cathode however the RDS involved the oxygen diffusion through micropores of YSZ film at high temperature of 950-100$0^{\circ}C$ and low oxygen partial pressure of 0.01-0.03 atm.

  • PDF

The Inhibitor Effect of (E)-5-[(4-(benzyl(methyl)amino)phenyl)diazenyl]-1,4-dimethyl-1H-1,2,4-triazol-4-ium zinc(II) Chloride, an Industrial Cationic Azo Dye, onto Reducing Acidic Corrosion Rate of Mild Steel

  • Ozkir, Demet;Kayakirilmaz, Kadriye
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.257-272
    • /
    • 2020
  • This study covers the stages of testing whether the azo dye with chemical name (E)-5-[(4-(benzyl(methyl)amino)phenyl)diazenyl]-1,4-dimethyl-1H-1,2,4-triazol-4-ium zinc (II) chloride (DMT), known as Maxilon Red GRL in the dye industry, can be used as an anticorrosive feasible inhibitory agent, especially in industrial areas other than carpet, yarn and fibre dyeing. These test stages consist of the electrochemical measurement techniques such as potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and linear polarization resistance (LPR) for diverse concentrations and durations. The adsorption of the viewed DMT molecule on the mild steel surface obeyed the Langmuir isotherm. The zero charge potential (PZC) of mild steel was also found to assess the inhibition mechanism in containing DMT solution. The inhibition performance of DMT on the mild steel in a 1.0 M HCl solution was also investigated using methods such as metal microscope, atomic force microscope (AFM) and field emission scanning electron microscope (FE-SEM).