• 제목/요약/키워드: Surface hardness change

검색결과 264건 처리시간 0.025초

고분자 복합재료의 기계적 물성에 미치는 질소기압의 영향 (Effect of Nitrogen Gas Pressure on the Mechanical Properties of Polymer Composite Materials)

  • 김부안;황현영;강석준;문창권
    • 동력기계공학회지
    • /
    • 제20권5호
    • /
    • pp.14-19
    • /
    • 2016
  • This study is about the effect of nitrogen gas pressures during manufacturing process on the mechanical properties of composite materials. $TiO_2$/epoxy resin nanocomposites and carbon fiber reinforced epoxy resin(CFRP) composites were fabricated under various nitrogen gas pressures. Tensile strength test, vicker's hardness test and fracture surface observation were carried out to investigate the effect of nitrogen gas pressure. As a result, the tensile strength of nanocomposite and CFRP composites showed clearly increasing tendency by a change in the nitrogen gas pressure up to 3.0 atm and then the tensile strength decreased a little. However, the vicker's hardness of $TiO_2$/epoxy nanocomposites showed same hardness values regardless of the nitrogen gas pressures.

Ni-Fe의 도금 층의 조성과 표면 형상에 영향을 미치는 도금인자들에 관한 연구 (The Effects of Electroplating Parameters on the Morphologies and Compositions of Nickel-Iron Alloy Electrodeposits)

  • 고영권;임태홍;이재호
    • 마이크로전자및패키징학회지
    • /
    • 제14권3호
    • /
    • pp.51-55
    • /
    • 2007
  • Ni-Fe 전해도금 시 전류밀도, 펄스주기와 전류인가 방식, 도금욕의 Fe 이온의 농도, 첨가제 등의 인자들이 도금 층의 조성, 표면형상, 표면 경도에 미치는 영향에 관하여 연구하였다. 시편에 가해지는 전류밀도, 전류인가방식과 Fe이온의 농도를 변화시킴으로써 Ni-Fe의 도금 층 내에 Ni-Fe의 조성을 조절하는 것이 가능하였고 또한 첨가제의 양을 변화시킴으로써 표면형상이 변화됨을 확인하였다. PC를 사용한 경우 직류를 사용한 경우보다 높은 $550{\sim}600Hv$의 경도값을 얻을 수 있었다. 사카린을 첨가한 경우 도금층의 잔류응력을 낮추어 균열이 없는 도금층을 얻었다. Ni-Fe의 단면의 조성을 분석함으로써 도금 층의 두께에 따른 조성의 변화를 확인하였다.

  • PDF

수종 복합레진에 있어서 효소 역할에 의한 표면 경도와 조도 변화에 관한 연구 (THE STUDY OF CHANGE IN SURFACE HARDNESS AND TEXTURES OF COMPOSITE RESIN DUE TO ENZYMATIC ACTION)

  • 김미리;이명종
    • Restorative Dentistry and Endodontics
    • /
    • 제20권1호
    • /
    • pp.193-213
    • /
    • 1995
  • The purpose of this study is to investigate a possible contribution of nonspecific esterases, which occur in the oral cavity, to the degradation of ester bonds in polymethacrylates. One of the problems connected with the use of composite resins for restorations is their inadequate resistance to wear. It has been shown that methacrylate hydrolysis can be catalyzed by enzymes and that a carboxylic hydrolase (porcine liver esterase) catalyzed the hydrolysis of several mono - and dimethacrylates. The softening effect on a BISGMA/TEGDMA polymer induced by hydrolase will accelerate the in vivo wear of the polymer. Porcine liver esterase (EC 3.1.1.1) 3.2 mol/L $(NH_4)_2$ $SO_4$ was obtained from Sigma Chemical Company. The esterase activity of one unit is defined as the amount of enzyme capable of hydrolyzing $l{\mu}mol$ ethyl butyrate per min at pH 8.0 AT $25^{\circ}C$. Phosphate buffer, 10mmol/L, pH 7.0, was made by adjustment of a solution of $Na_2HPO_4$ with $H_3PO_4$. Composite resins used in this study are Silux Plus, Z-100, Durafil VS, and Prisma APH. Cylindrical specimens, 14mm in diameter and 3mm thick, of Silux Plus, Z-100, Durafil VS, Prisma APH were polymerized under the celluloid strip. 60 specimens were divided into 2 groups. One group was emersed only in buffer solution, the other group was emersed in buffer and enzyme solution. Silux Plus and Z-100 were divided into 2 subgroups, one subgroup was cured only Visilux 2. And the other subgroup was cured Visilux 2 and Triaid II. Thereafter, specimens were polished to its best achievable surface according to manufacture's directions. The Vickers hardness of the specimens was measured after 1, 2, 4, 7, 9, 15, 50 days. The solutions were changed after each measurement. Composite resin surfaces were evaluated for the surface roughness with profilometer (${\alpha}$-step 200, Tencor instruments, USA) after 1 and 50 days. And then surfaces of specimens were pictured with stereosopy after 1 and 50 days. The results were as follows. 1. The surface hardness of Silux plus, durafil VS, and Prisma APH were decreased with time. But, the surface hardness of Z-100 was not decreased. 2. The surface hardness of all composite resins was decreased by esterase. 3. Composite resins, which were light-cured by Visilux 2 and concomitantly baked by oven, showed more hardened surface than light-cured by Visilux 2 only. 4. Significant surface changes were occured in Silux plus after esterase treatment.

  • PDF

의치세정제와 소독제가 의치상 레진의 색조, 표면경도, 표면조도에 미치는 영향에 대한 연구 (THE EFFECTS OF DENTURE CLEANSERS AND DISINFECTANTS ON THE COLOR, SURFACE HARDNESS, SURFACE ROUGHNESS OF DENTURE BASE RESINS)

  • 양희진;장복숙;정동준;허성주;한동후;심준성;장명우
    • 대한치과보철학회지
    • /
    • 제39권1호
    • /
    • pp.105-113
    • /
    • 2001
  • The purpose of this study is to compare effects of denture cleansers and disinfectants on the color. surface hardness, and surface roughness of reinforced acrylic resin using polyhedral oligosilsesquioxane molecules(POSS resin) to those of common resins. According to manufacturer's instructions, 45 specimens were made from three denture resins(Luciton 199, Paladent 20, POSS resin), and polished. Five denture cleansers(distilled water, glutaraldehyde, alkaline hypochlorites, chlorhexidine, alkaline peroxides) in combination with three denture resins were evaluated before and after immersion for 7 days. Color data in $L^*a^*b^*$ system were measured with a colorimeter. Surface hardness data were measured with a microhardness tester. Surface roughness data were measured with a 3-dimensional surface analyzer. Data were analyzed with two-way ANOVA, one-way ANOVA, and t-test. The results were as follows : 1. All resins(Luciton 199, Paladent 20, POSS resin) showed significant differences in color after immersion in hypochlorites(p<0.05). 2. POSS resin showed significant differences in color compared with Paladent 20 in all denture cleansers, but no statistically significant differences with Luciton 199(p<0.05). 3. Luciton 199 showed significant differences of surface hardness in chlorhexidine, Paladent 20 showed significant differences in glutaraldehyde and chlorhexidine. POSS resin showed a little change of surface in all denture cleanser, but no statistically significant differences(p<0.05). 4. Luciton 199 and Paladent 20 showed significant differences of surface roughness in hypochlorites and glutaraldehyde, and POSS resin showed no statistically significant differences in all denture cleansers(p<0.05).

  • PDF

Effect of dental bleaching on the microhardness and surface roughness of sealed composite resins

  • Fernandes, Renan Aparecido;Strazzi-Sahyon, Henrico Badaoui;Suzuki, Thais Yumi Umeda;Briso, Andre Luiz Fraga;Santos, Paulo Henrique dos
    • Restorative Dentistry and Endodontics
    • /
    • 제45권1호
    • /
    • pp.12.1-12.8
    • /
    • 2020
  • Objectives: The aim of this in vitro study was to evaluate the microhardness and surface roughness of composite resins before and after tooth bleaching procedures. Materials and Methods: Sixty specimens were prepared of each composite resin (Filtek Supreme XT and Opallis), and BisCover LV surface sealant was applied to half of the specimens. Thirty enamel samples were obtained from the buccal and lingual surfaces of human molars for use as the control group. The surface roughness and microhardness were measured before and after bleaching procedures with 35% hydrogen peroxide or 16% carbamide (n = 10). Data were analyzed using 1-way analysis of variance and the Fisher test (α = 0.05). Results: Neither hydrogen peroxide nor carbamide peroxide treatment significantly altered the hardness of the composite resins, regardless of surface sealant application; however, both treatments significantly decreased the hardness of the tooth samples (p < 0.05). The bleaching did not cause any change in surface roughness, with the exception of the unsealed Opallis composite resin and dental enamel, both of which displayed an increase in surface roughness after bleaching with carbamide peroxide (p < 0.05). Conclusions: The microhardness and surface roughness of enamel and Opallis composite resin were influenced by bleaching procedures.

Tribological Performance of Ni-Cr Composite Coating Sprayed onto AISI 4340 (SNCM439) Steel by High Velocity Oxygen Fuel

  • Umarov, Rakhmatjon;Pyun, Young-Sik;Amanov, Auezhan
    • Tribology and Lubricants
    • /
    • 제34권6호
    • /
    • pp.217-225
    • /
    • 2018
  • In this study, we spray a Ni-Cr composite powder onto AISI 4340 steel using the high velocity oxygen fuel method. We subsequently subject the Ni-Cr coating (as-sprayed) to ultrasonic nanocrystal surface modification (UNSM) process to improve the tribological performance. This study aims at increasing the wear resistance and durability of the Ni-Cr coating by altering the surface integrity and microstructure via the UNSM process. The UNSM process reduces the surface roughness of the as-sprayed coating by about 64%, which is explained by observing the elimination of high peaks and valleys and filling up micro-pores. Furthermore, a change in the microstructure of the coating due to continuous high-frequency strikes to the surface by a tip can lead to an increase in hardness from about 48 to 60 HRC. Furthermore, we investigate the characterization of the friction and wear behavior of Ni-Cr coating by a ball-on-disc tribometer in the dry conditions. We determine that after the UNSM process, there is a significant reduction in the friction coefficient of the as-sprayed coating from approximately 1.1 to 0.75. This is owing to the increased hardness and smoothed surface roughness. In addition, we investigate the surface morphology and wear track of the coatings before and after the UNSM process using a scanning electron microscope, energy dispersive spectrometer, and three-dimensional laser scanning microscope. We observe that the wear track of the Ni-Cr coating after the UNSM process is lower than that of the as-sprayed one. Thus, we confirm that the UNSM process has a significant influence on the improvement of the tribological performance of the Ni-Cr composite coating.

고강도 DP강과 TRIP강의 표면 수소 주입량에 따른 수소취성평가 (The Change of Microstructures According to the Charging Amounts of Hydrogen in High Strength DP Steels and TRIP Steel)

  • 이철치;박재우;강계명
    • 한국표면공학회지
    • /
    • 제45권3호
    • /
    • pp.130-135
    • /
    • 2012
  • Hydrogen charging was electrochemically conducted at high strength DP steels and TRIP steel with varying charging time. The penetration depths and the mechanical properties with charging conditions were investigated through the distribution of micro-hardness and the microstructural observation of the subsurface zone. The micro-Vickers hardness was measured to evaluate the hydrogen embrittlement of subsurface zone in addition to the microscope investigation. It was shown that the hydrogen amounts decreased in DP steels and TRIP steel with increasing hydrogen charging time. As shown by micro-Vickers hardness test and small punch test results, micro-Vickers hardness and SP energy for DP steels and TRIP steel decreased with increasing hydrogen charging time, for constant value of charging current density. SEM investigation results for the hydrogen contained samples showed that the major fracture behavior was brittle fracture which results in dimples on fractured surface and the size of dimples were decreased with increasing hydrogen charging time. These results indicate that hydrogen embrittlement is the major cause for the fracture of high strength steels and also micro-Vickers hardness test and small punch test is a valuable test method for hydrogen embrittlement of high strength sheet steels.

수복용 레진과 인공치아간의 결합강도 연구 (Study on shear bond strength of various composite resins to artificial denture teeth)

  • 박경모
    • 대한치과기공학회지
    • /
    • 제36권3호
    • /
    • pp.171-177
    • /
    • 2014
  • Purpose: The dental medicine has been preparing the custom-made service to meet the requirements of the aged society, while the average span of human life is growing more and more, and the full denture is a representative of them. It is causing great concern in these atmosphere of society, and demands for it are expected to increase. The full denture is a uniform combination of denture base and artificial teeth using polymerization, and is most influenced by change of physical properties of denture base and bonding strength with artificial teeth. Methods: In this study, the samples were made of composite resin combined with occlusion surface of artificial teeth undergone mechanically surface treatment to evaluate the bonding strength of composite resin for repairing artificial teeth. The resin teeth used in this study are 3 types artificial teeth. And 3 types of composite resins are used that are various polymerization resin. The shear strength of composite resins made in various polymerization ways to resin teeth was measured to evaluate bonding strength of artificial teeth to each composite resins. Results: Surface hardness's results on Trubyte Biotone(74.58Hv), Biotone IPN(70.06Hv), Endura Posterio (64.48Hv). Results of bonding strength of artificial teeth to composite resins on ES samples(8.73Mpa), IF(4.37Mpa) and IZ(3.84Mpa). Conclusion: 1. The Trubyte Biotone(74.58Hv) was first, followed by Biotone IPN(70.06Hv), and Endura Posterio(64.48Hv) in surface hardness's results of worn sides using hardness test. 2. The ES samples(8.73Mpa) showed significant differences with IF(4.37Mpa) and IZ(3.84Mpa) (p<0.05), but not other samples(p>0.05) in results of bonding strength of artificial teeth to composite resins.

THE EFFECT OF GOLD ELECTROFORMING PROCEDURE ON GOLD-SILVER-PALLADIUM ALLOY

  • Hwang, Bo-Yeon;Kim, Chang-Whe;Lim, Young-Jun;Kim, Myung-Joo
    • 대한치과보철학회지
    • /
    • 제45권3호
    • /
    • pp.303-309
    • /
    • 2007
  • Statement of problem. The effect of gold electroforming on gold alloy was not studied. Purpose. This in vitro study investigate the effect of gold electroforming on gold-silver-palladium alloy. Material and methods. Three pieces of gold strips had undergone the electroforming procedures on one side and then half of the side again electroformed. The set mode for this study was program 1 ($200{\mu}m$). And the processing time was 15min (1/20 time to form $200{\mu}m$ coping). The confocal laser scanning microscope (PASCAL 5, Carl Zeiss, Bernried, Germany) was used to measure the thickness of the pure gold layer electroformed on the gold strips. Half of the gold strip was coated two times with electroformed gold, and the other half one time. The data from the cone focal laser system was processed to get the vertical profile of the strips and the difference of the vertical height between the double coated and single coated layer was regarded as the thickness of the gold coating. The layer thickness value to built 3D image of the cone-focal laser was set $0.5{\mu}m$. Next to the measurement of the thickness of the coating, the Vicker's hardness test was done. It was performed on the double coated surface, single coated surface and non-coated surface (back side) three times each. Results. The mean thickness value gained from gold electroforming technique was measured to be $22{\mu}m$ for sample 1, $23{\mu}m$ for sample 2, $21{\mu}m$ for sample 3. In the same condition of time, power and the amount of electrolyte, the data showed no difference between samples. According to the results of variance analysis, the differences among the variations in number of coating were statistically insignificant (p>0.05), meaning that the two times of gold electroforming coating did not change the hardness of gold-silver-palladium alloy. Conclusion. The test of thickness of gold coating proved the coherency of the gold electroforming procedure, in other words, when the power, the exposed surface area, processing time and the amount of electrolytes were set same, the same thickness of gold would be coated on. The hardness test showed that the electroformed gold coating did not change the hardness of the gold-silver-palladium alloy when it is coated not more than $45{\mu}m$.

기존 세라믹 및 초고속 용사 분말피막 표면개질 플런저의 내구성 특성에 관한 연구 (A Study on Durability Characteristics for Plungers of Conventional Ceramic and Surface Modification by Powder Coating Using High Velocity Oxygen Fuel Thermal Spray)

  • 배명환;박병호;정화
    • 한국자동차공학회논문집
    • /
    • 제24권3호
    • /
    • pp.285-293
    • /
    • 2016
  • The high velocity oxygen fuel(HVOF) thermal spray is a kind of surface modification techniques to produce the sprayed coating layer. This process is to form the coating layer after spraying the powder to molten or semi-molten state by the ultra-high speed at the high-temperature heat source and conflicting with a substrate. The efficiency of thermal spraying is dropped, however, because the semi-molten powder in a spray process become a factor that degrades the mechanical property by the formed pore within the coating layer. Therefore, it is necessary to melt completely the thermal spray powder in order to produce the coating layer with an optimal adhesive force. In this study, to improve the wear resistance, corrosion resistance and heat resistance, the plungers of high-speed and ultra-high pressure reciprocating hydraulic pumps used in ironworks are manufactured with STS $420J_2$ and are coated by the powders of WC-Co-Cr and WC-Cr-Ni including the WC of high hardness using a HVOF thermal sprayer developed in this laboratory. These are called by the surface-modified plungers. The surface roughness, hardness, and surface and cross-sectional microstructure of these two surface-modified and conventional ceramic plungers are measured and compared before operation with after operation for 100 days. It is found that the values of centerline average surface roughness and maximum height for conventional ceramic plunger are 9.5 to 10.8 and 5.2 to 5.7 times higher than those of surface-modified ones coated by WC-Co-Cr and WC-Cr-Ni because the fine tops and bottoms on surface roughness curve of conventional ceramic plunger are approximately 100 times higher than those of surface-modified ones. In addition, the pores and scratches in the surface microstructure are considerably formed in the order of conventional ceramic, WC-Cr-Ni and WC-Co-Cr surface-modified plungers. The greater the WC content of high hardness powder is less the change in the plunger surface.