• Title/Summary/Keyword: Surface hardness change

Search Result 262, Processing Time 0.026 seconds

Heat Treatment Characteristics of a Press Draw Mold by Using High Power Diode Laser (고출력 다이오드 레이저를 이용한 프레스 드로우금형의 열처리 특성)

  • Hwang, Hyun-Tae;So, Sang-Woo;Kim, Jung-Do;Kim, Young-Kuk;Kim, Byeong-Hun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.6
    • /
    • pp.339-344
    • /
    • 2009
  • Recently, Laser surface treatment technologies have been used to improve wear charactenitics and fatigue resistance of metal molding. When the laser beam is irradiated on the surface and laser speed is appropriate, the laser focal position is rapidly heated and the thermal energy of surface penetrates the material after irradiation, finally imbuing it with a new mechanical characteristic by the process of self-quenching. This research estimates the material characteristic after efficient and functional surface treatment using HPDL, which is more efficient than the existing CW Nd:YAG laser heat source. To estimate this, microstructural changes and hardness characteristics of three parts (the surface treatment part, heat affect zone, and parental material) are observed with the change of laser beam speed and surface temperature. Moreover, the depth of the hardened area is observed with the change of the laser beam speed and temperature. From the results of the experiments, it has been shown that the maximum hardness is approximately 788Hv when the heat treatment temperature and the travel speed are $1150^{\circ}$ and 2 mm/sec, respectively.

A Study on Nitrogen Permeation Heat Treatment of Super Martensitic Stainless Steel (수퍼 마르텐사이트계 스테인리스강의 질소침투 열처리)

  • Yoo, D.K.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.1
    • /
    • pp.3-9
    • /
    • 2006
  • The phase changes, nitride precipitation and hardness variations of 14%Cr-6.7Ni-0.65Mo-0.26Nb-0.05V-0.03C super martensitic stainless steel were investigated after nitrogen permeation heat treatment at a temperature range between $1050^{\circ}C$ and $1150^{\circ}C$. The nitrogen-permeated surface layer was transformed into austenite. The rectangular type NbN, NbCrN precipitates and fine round type precipitate were coexisted in the surface austenite layer, while the interior region that was free from nitrogen permeation kept the martensitic phase. The hardness of surface austenite showed 280 Hv, while the interior region of martensite phase represented 340 Hv. When tempering the nitrogen-permeated steel at $450^{\circ}C$, a maximum hardness of 433 Hv was appeared, probably this is attributed to the secondary hardening effect of the precipitates. The nitrogen concentration decreased gradually with increasing depth below the surface after showing a maximum of 0.3% at the outmost surface. The strong affinity between nitrogen and Cr enabled the substitutional element Cr to move from interiors to the surface when nitrogen diffuse form surface to the interior. Corrosion resistance of nitrogen permeated steel was superior to that of solution-anneaed steel in the solution of 1N $H_2SO_4$.

Optimization of Boiling Process and Texture Change in Heating (밤 가공품 자숙 공정 중 물성의 변화 및 최적화)

  • 김영찬;이주백
    • Food Science and Preservation
    • /
    • v.4 no.3
    • /
    • pp.337-341
    • /
    • 1997
  • Texture is an important quality factor of processed chestnut products, which changes depending on the conditions of boiling process. The conventional boiling process consists of three stage(1st : 70 minutes at 60$^{\circ}C$; 2nd : 20minutes at 70$^{\circ}C$; 3rd : 80minutes at 98$^{\circ}C$). To improve the conventional boiling process of processed chestnut products, we investigated the changes of texture at different stages of boiling process and undertook the optimization of boiling process by response surface method on heating times of 2nd and 3rd heating, and amount of softening agent. The initial hardness and cohesiveness, the most important textural characteristics of chestnut, were 7.876kg and 0.189, respectively. In the third boiling stage, hardness decreased to 0.313kg and cohesiveness increased to 0.310. Using response surface method the minimum point of hardness and maximum point of cohesiveness was examined and model equations for predicting the changes of hardness and cohesiveness in the optional boiling condition were developed.

  • PDF

The Characteristics of the Chungja Celadon the Amount of BaTio3 (BaTio3 조성비 변화에 따른 청자소지물질의 특성)

  • Yun, Mi-Young;Kim, Yeon-Jung;Ja, Lim-Hun
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.1
    • /
    • pp.31-36
    • /
    • 2012
  • In order to improve the mechanical roperties of the Gangjin celadon $BaTiO_3$ was added into the raw materials of celadon matrix. Through SEM and XRD analysis the structural changes were observed and the hardness values were measured. We could confirm that the mechanical strength considerably increased in the $BaTiO_3$ added celadon through the measurement of hardness values. The increase of mechanical strength values in the celadon may result from the compositional change in the microstructure such as grain boundary area through EDAX analysis. We might suggest a fundamental idea to improve the mechanical intensity of the celadon.

A Study on the Surface Grinding using the Machining Center (II) (머시닝센터를 이용한 평면 연삭가공에 관한 연구 (II))

  • Lee, S. M.;Choi, H.;lee, J. C.;Cheong, S. H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.880-883
    • /
    • 2000
  • Temperature generated in the workpiece during grinding process can cause thermal damages. Therefore it is important to understand surface temperature generated during grinding process. In this paper, a theoretical and experimental investigation were performed for the grinding temperature. Grinding experiments were performed in machining center using vitrified bonded CBN cup-type wheel. The surface temperature was measured using thermocouple and calculated through a model of the partition of energy between wheel and workpiece. The residual stress and hardness of ground surface were measured. The experimental results indicate that the surface temperature was in good agreement with theoretical ones. Residual stress and hardness of ground surface were more affected by the change of table speed than the depth of cut.

  • PDF

Surface Modification of AC4A Aluminum Alloy Castings Using Friction Thermomechanical Process (마찰열기계적 공정을 이용한 AC4A 합금의 표면개질)

  • Yoon, Tae-Wook;Ko, Young-Bong;Ko, Byung-Chun;Park, Kyeung-Chae
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.5
    • /
    • pp.230-237
    • /
    • 2010
  • FTMP(friction thermo-mechanical process) is an adaptation of friction stir welding, and can be used as a generic process to modify the microstructure at selective locations. In this study, in order to analyze characteristics of surface modification of ACA4 castings by FTMP, change of rotating speed(R/S) and traveling speed(T/S) of tool were applied as conditional parameter. Analysis of microstructure, hardness, surface roughness and depth of modified zone(MZ) were searched. The best condition were obtained at R/S 600 rpm and T/S 100 mm/min. At this time, hardness was 82 HV, the surface roughness was 0.07 mm and the depth at MZ was 1.72 mm. Free defects microstructure and fine Si particles formation and strong forging effects were analyzed at MZ.

Effect of Experimental Fluoride Varnish upon the Vickers Hardness of Bovine Teeth (실험용 불소바니쉬가 우치의 비커스 경도에 미치는 영향)

  • Kim, Ah-Jin;Son, Ju-Lee;Oh, Seunghan;Bae, Ji-Myung
    • Korean Journal of Dental Materials
    • /
    • v.43 no.1
    • /
    • pp.81-89
    • /
    • 2016
  • The purpose of this study was to evaluate the effect of the experimental and commercial fluoride varnishes on the Vickers hardness of bovine teeth. The experimental fluoride varnishes with 5 wt.% NaF were fabricated using Bis-GMA or rosin as the resin base. The components were mixed with over-head stirrer under warming up in a double boiler for 30 minutes. Four commercial fluoride varnishes (V-varnish, Flor-opal, Cavity shield, Fluor protector) were compared with the experimental fluoride varnishes. Vickers hardness was measured on the labial surface of bovine anterior teeth after applying fluoride varnish on 5th and 30th day. The surface of bovine teeth was observed with a scanning electron microscope before and after applying fluoride varnish and the change of the components on the bovine teeth surface was measured with EDX. In terms of hardness, the experimental rosin-based fluoride varnish showed significantly higher hardness on the 5th and 30th day than the control (bovine teeth without fluoride treatment)(p<0.05). EDX results showed that the fluoride content on the surface of bovine teeth treated with the experimental rosin-based fluoride varnish was highest on the 1st and 10th day. The higher hardness and fluoride content of experimental rosin-based fluoride varnish can be considered to be used as an effective fluoride varnish to prevent dental caries.

Surface modification of Aluminum for mold by nitrogen ion implantation (질소이온주입에 의한 금형용 알루미늄의 표면개질특성)

  • 강혁진;안성훈;김경동;이재상;이재형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.254-259
    • /
    • 2004
  • The research on surface modification technology has been advanced to change the properties of engineering material. Ion implantation is a novel surface modification technology to enhance the mechanical, chemical and electronic properties of mechanical parts. In this research, nitrogen ions are implanted into aluminum for mold to improve endurance and life span. To analyze modification of surface properties, micro hardness, friction coefficient, wear resistance, contact angle, and surface roughness were measured. Hardness of ion implanted specimens was higher than untreated specimen and friction coefficient was also improved. In this experiment, it can be expected that nitrogen ion implantation can contribute to enhance the mechanical properties of material and ion implantation technology may also be applied to other materials.

  • PDF

Effects of Alloying Element and Heat Treatment on Properties of Cu-Ti Alloys

  • Suk, Han-Gil;Hong, Hyun-Seon
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.5
    • /
    • pp.246-249
    • /
    • 2009
  • Cu-Ti alloys with titanium in the range of 0.5-6.0 wt% were developed to evaluate the effect of the titanium content and heat treatment on microstructure, hardness, and electrical conductivity. The hardness of the Ti-added copper alloys generally increased with the increase in titanium content and hardening was effective up to the 2.5 wt%-Ti addition. Microstructural examination showed that the second phase of $Cu_4Ti$ started to precipitate out from the 3.0 wt% Ti-addition, and the precipitate size and volume fraction increased with further Ti addition. Aging of the present Cu-Ti alloys at $450^{\circ}C$ for 1 h increased the hardness; however, the further aging up to 10 h did not much change the hardness. In the present study, it was inferred that in optimal Ti addition and aging condition Cu-Ti alloy could have the hardness and electrical conductivity values which are comparable to those of commercial Cu-Be alloy.

Effects of Mo Content on Surface Characteristics of Dental Ni-Ti Alloys (치과용 Ni-Ti합금의 표면특성에 미치는 Mo함량의 영향)

  • Han-Cheol Choe;Jae-Un Kim;Sun-Kyun ark
    • Corrosion Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.64-72
    • /
    • 2023
  • Ni-Ti shape memory alloy for dental nerve treatment devices was prepared by adding Mo to Ni-Ti alloy to improve flexibility and fatigue fracture characteristics and simultaneously increase corrosion resistance. Surface properties of the alloy were evaluated. Microstructure analysis of the Ni-Ti-xMo alloy revealed that the amount of needle-like structure increased with increasing Mo content. The shape of the precipitate showed a pattern in which a long needle-like structure gradually disappeared and changed into a small spherical shape. As a result of XRD analysis of the Ni-Ti-xMo alloy, R-phase structure appeared as Mo was added. R-phase and B2 structure were mainly observed. As a result of DSC analysis, phase transformation of the Ti-Ni-Mo alloy showed a two-step phase change of B2-R-B19' transformation with two exothermic peaks and one endothermic peak. As Mo content increased, R-phase formation temperature gradually decreased. As a result of measuring surface hardness of the Ti-Ni-Mo alloy, change in hardness value due to the phase change tended to decrease with increasing Mo content. As a result of the corrosion test, the corrosion potential and pitting potential increased while the current density tended to decrease with increasing Mo content.