• Title/Summary/Keyword: Surface hardness change

Search Result 263, Processing Time 0.023 seconds

CPP-ACP of artificially demineralized enamel surface and remineralization of material containing nano-sized carbonated apatite (인공 탈회된 법랑질 표면의 CPP-ACP와 nano-sized carbonated apatite 함유물질의 재광화효과)

  • Kim, Young-Sook
    • Journal of Korean society of Dental Hygiene
    • /
    • v.8 no.1
    • /
    • pp.13-22
    • /
    • 2008
  • This study compared tooth's remineralization using enamel surface artificially demineralized with 0.1M lactate and HCL solution using Vicker's Hardness Number(VHN) to compare CPP-ACP and remineralization of nano-sized Carbonate Apatite's initial caries. Using pH circulation models divided into 0% nano-CA, 5% nano-CA, 10% nano-CA, 10% CPP-ACP and D.W. they were treated for 5 minutes, three times a day for 14 days to get the following results. 1. There were no significant differences among the initial surface hardness of samples demineralized surface of front tooth in 5 groups. and all 5 groups' surface hardness reduced significantly after demineralization of enamel. 2. When inquiring into hardness changes through pH circulation model, the highest hardness change was in 5% nano-CA group. Also. 10% nano-CA and 10% CPP-ACP groups increased significantly. but there was no significant difference statistically. In generalizing the above experiment results, nano-sized Carbonate Apatite showed remineralization, and compared to 10% CPP-ACP group, 5% nano-CA had remineralization to artificial caries. thus implies that when we develop method to contact with tooth of nano-CA in the future, it is expected to gain synergy effect on function of saliva, a natural remineralization material.

  • PDF

A study on the change of root surface irradiated by Er:YAG laser (Er:YAG laser를 조사한 치근면의 변화에 관한 연구)

  • Lee, Sang-Hyun;Kim, Young-Jun;Chung, Hyun-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.2
    • /
    • pp.303-314
    • /
    • 2002
  • This study was performed to evaluate the usability of Er:YAG laser for periodontal therapy. Forty dental root slabs ($5{\times}5{\times}2mm^3$) were prepared from human periodontally diseased extracted teeth and grouped into 4 groups: 1) control (root planing only), 2) root planing and irradiated with laser at 30mJ, 3) root planing and irradiated with laser at 60mJ, and 4) root planing and irradiated with laser at 100mJ. The root slabs were embedded in resin block before laser treatment. Er:YAG laser was irradiated under water irrigation with the tip held perpendicular to the root surface in contact mode. After Er:YAG laser irradiation or planing on the root surface, morphological changes have been observed under SEM, and the micro-hardness and Ca/P ratio were compared. 1. In the Control group, the root surface showed the directional change caused by root planing instrumentation, and the presence of smear layer, and no exposure of dentinal tubule was observed. Laser irradiated group showed surface changes with rough dentin surface of niche and depression and dentinal tubule exposure by the elimination of smear layer. 2. The micro-hardness of root surface in the laser irradiated group was higher than the control group. The higher energy output was applied, the higher micro-hardness on root surface was resulted. 3. The higher energy output was applied, the higher Ca/P ratio was observed. The higher Ca/P ratio in 60mJ group and 100mJ group was statistically significantly compared to the control group and the 30mJ group. These results suggest that Er:YAG laser irradiation on the periodontally diseased root surface could remove smear layer and increase the micro-hardness on root surface and Ca/P ratio which contribute to enhance the acid resistance of periodontally treated root surface.

Change in Hardness and Microstructure with Quenching and Tempering of Ductile Cast Iron (구상흑연주철의 열처리에 따른 미세조직 및 경도 변화)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.2
    • /
    • pp.69-78
    • /
    • 2008
  • Differences in hardness and microstructure between surface and area at 0.3 mm below the surface after quenching and tempering of ductile cast iron for rear planet carrier of automotive transmission have been investigated. Microstructure of ductile cast iron consisted of ferrite, pearlite, and nodular graphite. The amount of pearlite increased with going down to the half-thickness area. It was found that Cr and Mo segregated to the pearlite and the pearlite transformed to the harder martensite during quenching. The martensite was more resistant to the decomposition to ferrite and cementite during tempering because of segregation of Cr and Mo, resulting in the harder tempered martensite. Consequently, the hardness of the surface with less amount of pearlite, corresponding to the harder martensite in the quenched and tempered microstructure, was lower than that of the area at 0.3 mm below the surface.

Enhancement of Surface Hardness of Zirconia Ceramics by Hydroxyapatite Powder Bed Sintering (Hydroxyapatite 분위기 소결을 통한 지르코니아 표면 경도 강화)

  • Choi, Min-Geun;Lim, Ji-Ho;Kong, Kyu-Hwan;Jeong, Dae-Yong;Lee, Wonjoo;Li, Long-Hao;Kong, Young-Min
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.677-681
    • /
    • 2014
  • To increase the mechanical property of zirconia, we have investigated the phase change and the resulting hardness of zirconia ceramics by hydroxyapatite (HA) powder bed sintering. It was observed using X-ray diffraction that the cubic zirconia phase, which has a higher hardness value than that of the tetragonal phase, was obtained at the surface of 3 mol% $Y_2O_3$ doped tetragonal zirconia polycrystal (3Y-TZP) ceramics during the sintering process; in our experimental conditions, the phase change at the surface increased as the sintering time increased. We believe that the observed crystalline phase change originated from the decomposition of HA and the diffusion of CaO, as follows. CaO, which was derived from the decomposition of HA at high temperature ($1400^{\circ}C$), diffused into the surface of 3Y-TZP and acted as a stabilizer. As a result, the Vickers hardness value of the treated specimens was higher than that of the non-treated specimen due to the formation of the cubic phase on the surface of 3Y-TZP.

The Change in Diffusion Coefficient and Wear Characteristic in Carbonitriding Layer of SCM415 Steel (침탄질화 처리된 SCM415강의 깊이에 따른 확산 및 마모특성 변화)

  • Lee, Su-Yeon;Youn, Kuk-Tea;Huh, Seok-Hwan;Lee, Chan-Gyu
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.5
    • /
    • pp.207-212
    • /
    • 2011
  • In this study, the change in diffusion coefficient and wear characteristic with depth in the carbonitriding layer of SCM415 steel was discussed. To determine the diffusion coefficient, depth profile of carbon was measured from the surface using the Glow Discharge Spectrometer. In otherwise, measurements of carbide fraction, micro vickers hardness of surface and observation of microstructure have been implemented through the SEM image. $Fe_3$(C,N) layer and effective depth were increased as the time for carbonitriding takes longer. According to wear experiment, the results showed that wear resistance was improved by $Fe_3$(C,N) layer and effective depth.

A STUDY ON THE HARDNESS IN VISIBLE LIGHT COMPOSITE RESIN (광중합(光重合) 레진의 경도측정(硬度測定)에 관(關)한 연구(硏究))

  • Lee, Myung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.14 no.1
    • /
    • pp.179-188
    • /
    • 1989
  • The purpose of this study was to measure Micro vicker's hardness of 4 kinds of anterior Composite resins (Pyrofil light bond anterior, Lite-fil anterior, Photo clear fil anterior, Silux) and 6 kinds of posterior Composite resin (Pyrofil light bond posterior. Lite-fil posterior, Photo clear fil posterior, Occlusin posterior, Palfique light posterior, P-30, posterior) according to deference of depth and distance of light tip from surface of composite resin. Each composite resin was filled into Teflon tube of 5mm in diameter and 5mm in depth, celluloid matrix was covered and the light in accordance with each composite resin was irradiated in distance of zero millimeter and 1 cm from light tip to surface of composite resin for 30 seconds. Specimens were sectioned longitudinally with cutting device. Microvicker's hardness measurements ware made at the depth of surface, 1mm, 2mm, 3mm, 4mm and 5mm from the surface to deep portion. Vicker's hardness numbers were taken on each depth under 200gm load for 30 seconds with MVK-E. The following results were: 1. The highest hardness value was measured at 1 mm depth. Then the deeper the depth, the lesser the hardness was observed. 2. The hardness value of anterior composite resins is lower than one of posterior composite resins. 3. Hardness number of composite resin irradiated in distance of zero millimeter from surface of composite resin was higher than one of 1 cm from surface of composite resin. 4. The pattern of hardness change at varying depth was similar to all the experimental material with no relation to distance of light from specimen.

  • PDF

Enamel strengthening effect of the dental fluoride compound (수종의 치과용 불소화합물의 물리적 조건에 따른 치질강화에 미치는 영향)

  • Kim, Joo-Won;Lee, Jung-Ae;Lee, Ka-Yean
    • Journal of Korean society of Dental Hygiene
    • /
    • v.10 no.4
    • /
    • pp.757-764
    • /
    • 2010
  • Objectives : The fluoride coating for caries prevention and strengthen enamel use NaF(sodium fluoride, Junsei Chemical Co., Ltd, Japan) 2% gel, SnF2(stannous fluoride, SIGMA-ALDRICH Gmbh, USA)8% gel and APF(acidulated phosphate fluoride, Sultan health care, USA) 1.23% gel. Methods : After put the enamel piece in these fluoride compound gel, we observed density level. And after measuring the vickers hardness, Got the following conclusions. Results : 1. After settling in the APF 1.23% during 6 days, we observed high density level of enamel surface using 250 magnification scanning microscope. The vacuum of surface packed (in) like sardines. 2. After settling in the APF 1.23% during 6 days, we observed reducing the space between the cluster of enamel surface using 50,000 magnification scanning microscope. 3. The vickers hardness change was very much on the all kinds of fluoride compound gel[2% NaF(sodium fluoride)gel, 8% SnF2(stannous fluoride) gel, 1.23% APF(acidulated phosphate fluoride)gel]. It's all because of reducing the space between the cluster of enamel surface(p<0.001). Conclusions : The vickers hardness change was very much on the all kinds of fluoride compound. It's all because of reducing the space between the cluster of enamel surface.

Effect of the electrolyte composition and the plating condition on the hardness of zinc deposit in the sulfate bath (황산아연욕에서 도금층 경도에 미치는 욕조성 및 도금조건의 영향)

  • 김명수;김영근
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.5
    • /
    • pp.356-364
    • /
    • 2000
  • Factors that affect the hardness of the zinc electrodeposits in the sulfate electrolyte were investigated. The hardness of zinc deposit was enhanced by increasing the concentration of impurities such as iron and nickel in the bath that changed the crystallographic orientation of the zinc deposit from the strong basal plane to the random orientation. The increase of the concentration of sodium sulfate and current density in iron contained bath improved the hardness of zinc deposit because those were easily codeposited in zinc layer. However the increase of the concentration of sodium sulfate up to 80g/$\ell$ in the bath darkened the surface of zinc electrodeposits due to change of morphology by the codeposition of iron.

  • PDF

Study on the characteristics of shot peened material (쇼트피닝에 의한 재료의 특성에 관한 연구)

  • 이승호
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.2
    • /
    • pp.15-22
    • /
    • 1998
  • The effects of shot peening an the fatigue strength are studied in this paper. Applying the multistage shot peening on the material. the relation between the residual stress and fatigue strength compressive is investigated. Observing tensile strength elongation. reduction of area. hardness. and roughness. the results can be summarized as follows ; 1.The change of mechanical properties is small before and after the shot peening is carried out. The change of hardness is also small in high hardness material. 2.The surface roughness does not affect the fatigue strength. but the surface roughness is improved by multi-stage shot peening. 3.The fatigue strength of multi-stage shot peening material is 756MPa and is 1.78 times higher than that of un-peened material. 4.The maximum compressive residual strength of multi-stage shot peening material is -792MPa the fatigue strength seems to be improved by residual stress.

  • PDF

Comparison of Surface Microhardness of the Flowable Bulk-Fill Resin and the Packable Bulk-Fill Resin according to Light Curing Time and Distance

  • Hyung-Min Kim;Moon-Jin Jeong;Hee-Jung Lim;Do-Seon Lim
    • Journal of dental hygiene science
    • /
    • v.23 no.2
    • /
    • pp.123-131
    • /
    • 2023
  • Background: As a restorative material used to treat dental caries, the light-curing type resin is widely used, but it has the disadvantage of polymerization shrinkage. The Bulk-Fill composite resin was developed to solve these shortcomings, but the existing research mainly focused on comparing the physical properties of a composite resin and a Bulk-Fill resin. A study on the light curing time and distance of the Bulk-Fill resin itself tend to be lacking. Methods: This study compares the surface microhardness of specimens prepared by varying the light curing time and distance of smart dentin replacement (SDR) as a flowable Bulk-Fill resin and Tetric N-ceram as a packable Bulk-Fill resin, and confirms the polymerization time and distance that becomes the optimum hardness. To determine the hardness of the specimen, it was measured using the Vickers Hardness Number (Matsuzawa MMT-X, Japan). Results: In SDR, the surface microhardness decreased as the distance increased in all time groups in the change distance from the curing tip. In the change of light curing time with respect to the distance from curing tip, the surface microhardness increased as the time increased. In Tetric N-ceram, the surface microharness showed no significant difference in the change of the distance of curing tip in the group of 20 and 60 second. But in the group of 10 and 40 seconds, decreased as the distance increased. The surface microharness increased as the light curing time increased in all distance groups. Conclusion: When using SDR and Tetric N-ceram in clinical practice, it is considered that as the distance from the polymerization reactor tip increases, a longer light curing time than the polymerization time recommended by the manufacturer is required.