• Title/Summary/Keyword: Surface geometry

Search Result 1,291, Processing Time 0.024 seconds

The Characteristics of the Hydrogen Embrittlement for the Cr-Mo Steels in Use of Pressure Vessel (압력용기용 Cr-Mo강의 수소취화 특성)

  • Lee, Hwi-Won;Yang, Hyun-Tae;Kim, Sang-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1107-1113
    • /
    • 2002
  • This study presents the hydrogen emblittlement in the metal, which decreases the ductility and then induces the brittle fracture. The contribution deals with the effect of strain rate and notch geometry on hydrogen emblittlement of 1.25Cr-0.5Mo and 2.25Cr-1Mo steels, which are in use at high pressure vessel. Smooth and notched specimens were examined to obtain the elongation and tensile strength. For charging the hydrogen in the metal, the cathodic electrolytic method was used. In this process, current density is maintained constant. The amount of hydrogen penetrated in the specimen was detected by the hydrogen determenator(LECO RH404) with the various charging time. The distribution of hydrogen concentration penetrated in the specimen was obtained by finite element analysis. The amount of hydrogen is high in smooth specimen and tends to concentrate in the vicinity of surface. The elongation and tensile strength decreased with the passage of charging time in 1.25Cr-0.5Mo and 2.25Cr-1Mo steels. The elongation increased and tensile strength decreased as strain rate increased. As a result of this study, it is supposed that 1.25Cr-0.5Mo steel is more sensitive than 2.25Cr-lMo steel in hydrogen embrittlement. Hydrogen embrittlement susceptibility of notched specimen after hydrogen charging is more remarkable than that of smooth specimen.

Residual stresses and viscoelastic deformation of an injection molded automotive part

  • Kim, Sung-Ho;Kim, Chae-Hwan;Oh, Hwa-Jin;Choi, Chi-Hoon;Kim, Byoung-Yoon;Youn, Jae-Ryoun
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.183-190
    • /
    • 2007
  • Injection molding is one of the most common operations in polymer processing. Good quality products are usually obtained and major post-processing treatment is not required. However, residual stresses which exist in plastic parts affect the final shape and mechanical properties after ejection. Residual stresses are caused by polymer melt flow, pressure distribution, non-uniform temperature field, and density distribution. Residual stresses are predicted in this study by numerical methods using commercially available softwares, $Hypermesh^{TM},\;Moldflow^{TM}\;and\;ABAQUS^{TM}$. Cavity filling, packing, and cooling stages are simulated to predict residual stress field right after ejection by assuming an isotropic elastic solid. Thermo-viscoelastic stress analysis is carried out to predict deformation and residual stress distribution after annealing of the part. Residual stresses are measured by the hole drilling method because the automotive part selected in this study has a complex shape. Residual stress distribution predicted by the thermal stress analysis is compared with the measurement results obtained by the hole drilling method. The molded specimen has residual stress distribution in tension, compression, and tension from the surface to the center of the part. Viscoelastic deformation of the part is predicted during annealing and the deformed geometry is compared with that measured by a three dimensional scanner. The viscoelastic stress analysis with a thermal cycle will enable us to predict long term behavior of the injection molded polymeric parts.

Semi-Solid Forming, Casting and Forging Technologies of Lightweight Materials (경량화 소재의 반용융 및 주조/단조기술)

  • 강충길;최재찬;배원병
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.7-21
    • /
    • 2000
  • This paper describes an overview of the thixoforming and thixomolding processes. Semi-solid metalworking (SSM), which is called the thixoforming process of aluminium materials, incorporates the elements of both casting and for the manufacture of near net shape parts. The SSM has some advantages such as net shape or near net shape manufacturing, the ability to form thin walls, excellent surface finish, tight tolerance, and excellent dimensional precision. The thixomolding process of Mg alloy (AZ9l) is a combination of two technologies both conventional die casting and plastic injection molding. The feed material used is a machined chip with a geometry of approximately 1 mm square and a length of 2~3 mm. The semi-solid forming (SSF) of high quality aluminium and magnesium parts will be established in the automotive and electronic industry, in the future. The hybrid method of casting/forging has been caused attention. This process uses a preformed material made by casting instead of the wrought material and finishes it by a single forging process. This process is expected to lower costs without sacrificing the mechanical and finishes it by a single forging process. The process is expected to lower costs without sacrificing the mechanical properties. The authors, intending that the casting/forging process contributes to a reduction in production cost of aluminum automotive parts in Korea, describes the feature of the casting/forging process, aluminum alloys suitable for the cast preform, microstructure and mechanical properties of the cast preform, application examples of cast/forging, and further study.

  • PDF

A Study on the NC Embedding of Vision System for Tool Breakage Detection (공구파손감지용 비젼시스템의 NC실장에 관한 연구)

  • 이돈진;김선호;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.369-372
    • /
    • 2002
  • In this research, a vision system for detecting tool breakage which is hardly detected by such indirect in-process measurement method as acoustic emission, cutting torque and motor current was developed and embedded into a PC-NC system. The vision system consists of CMOS image sensors, a slit beam laser generator and an image grabber board. Slit beam laser was emitted on the tool surface to separate the tool geometry well from the various obstacles surrounding the tool. An image of tool is captured through two steps of signal processing, that is, median filtering and thresholding and then the tool is estimated normal or broken by use of change of the centroid of the captured image. An air curtain made by the jetting high-pressure air in front of the lens was devised to prevent the vision system from being contaminated by scattered coolant, cutting chips in cutting process. To embed the vision system to a Siemens PC-NC controller 840D NC, an HMI(Human Machine Interface) program was developed under the Windows 95 operating system of MMC103. The developed HMI is placed in a sub window of the main window of 840D and this program can be activated or deactivated either by a soft key on the operating panel or M codes in the NC part program. As the tool breakage is detected, the HMI program emit a command for automatic tool change or send alarm to the NC kernel. Evaluation test in a high speed tapping center showed the developed system was successful in detection of the small-radius tool breakage.

  • PDF

A study on wear mechanism of tube fretting affected by support shapes (지지부 형상에 따른 튜브 프레팅 마멸기구의 연구)

  • Lee, Yeong-Ho;Kim, Hyeong-Gyu;Ha, Jae-Uk
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.73-79
    • /
    • 2002
  • Fretting wear test in room temperature air was performed to evaluate the wear mechanism of fuel rod using a fretting wear tester, which has been developed for experimental study. The main focus was to compare the wear behaviors of fuel rod against support springs at different contact geometries (i.e. concave and convex) and slip directions (axial and transverse). The wear on the tube was examined by the surface roughness tester, which measures the volume. The result indicated that with change of contact geometry from 5N of normal load to 0.1mm gap, wear volume of tube Increased in the condition of concave spring, but slowly decreased in convex spring. From the results of SEM observation, wear mechanism of each test condition was also depend on the above contact parameters. The wear mechanism of each test condition in room temperature air is discussed.

  • PDF

Case Studies on the Field Application of Miniature CPT's in South Korea (소형콘관입시험(Miniature CPT)의 국내현장적용 사례분석)

  • Yoon, Sung-Soo;Hwang, Dae-Jin;Kim, Jun-Ou;Ji, Wan-Goo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.269-281
    • /
    • 2010
  • The cone penetration test(CPT) has been increasingly used for in situ site characterization. However, the use of CPT is often limited due to specific site conditions depending on the cone size, geometry, and capacity of the CPT system used. In South Korea, it has generally been considered that the CPT could be satisfactorily performed only in soft soils. Louisiana State University/ Louisiana Transportation Research Center has implemented a field-rugged continuous intrusion miniature cone penetration test (CIMCPT) system since the 1990s. The miniature cone penetrometer of the CIMCPT system has a cross-sectional cone area of $2cm^2$ allowing finer soil profiles compared to the standard $10cm^2$. The reduced cross-sectional area also enables a system capacity reduction leading to cost saving and ease in maintenance. In addition, the continuous intrusion mechanism allows fast and economic site investigations. Samsung C&T Corporation has recently implemented a similar CIMCPT system. In this study, case studies on the field application of Samsung CIMCPT system for the last 2 years are presented to illustrate its performance investigation and its usefulness and limitation. Results of the case studies show that the CIMCPT system can be applied to soils with cone tip resistance($q_c$) values up to about 30MPa and allows a reliable and useful way to characterize soft soils. The results also show that the rod buckling limits the investigation depth by the system and the large contact pressure of the CIMCPT truck prevents the use of the system at sites with soft surface soils. According to the results of the case studies, the Samsung CIMCPT system has been being upgraded with a miniature cone with a longer rod, a crawler-type transportation system, a pre-boring system, and so on.

  • PDF

Underwater Channel Analysis and Transmission Method Research via Coded OFDM (수중채널 분석과 Coded OFDM을 통한 전송방법 연구)

  • Jeon, Hyeong-Won;Lee, Su-Je;Lee, Heung-No
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5B
    • /
    • pp.573-581
    • /
    • 2011
  • The underwater channel is known to offer poor communications channel. The channel medium is highly absorptive and the transmission bandwidth is limited. In addition, the channel is highly frequency selective; the degree of selectiveness depends on a detailed geometry of the channel. Furthermore, the response changes over time as the channel conditions affecting the response such as water temperature, sea surface wind and salinity are time-varying. The transceiver design to deal with the frequency and time selective channel, therefore, becomes very challenging. It has been known that deep fading at certain specific sub-carriers are detrimental to OFDM systems. To mitigate this negative effect, the proposed coded OFDM system employs an LDPC code based modulation. In this paper, we aim 1) to provide a detailed underwater channel model; 2) to design a robust LDPC coded OFDM system; 3) to test the proposed system under a variety of channel conditions enabled by the channel model.

Development of Rapid Manufacturing Process by Machining with Automatic Filling (자동 충진 공정을 이용한 쾌속 제작 공정 개발)

  • Shin, B. S.;Yang, D. Y.;Choi, D. S.;Lee, E. S.;Hwang, K. H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.174-178
    • /
    • 2001
  • In order to reduce the lead-time and cost, recently the technology of rapid protoyping and manufacturing(RPM)has been widely used. Machining process is still considered as one of the effective RPM methods that have been developed and currently available in the industry. It also offers practical advantages such as precision and versatility. Some considerations are still required during the machining process. One of the most important points is fixturing. There should be an effective method of fixturing since the fixturing time depends on the complexity of geometry of the part to be machined. In this paper, the rapid manufacturing process has been developed combining machining with automatic filling. The proposed fixturing technique using automatic filling can be widely applicable to free surface type of product such as a fan. In the filling stage, remeltable material is chosen for the filling process. An automatic set-up device attachable to the table of the machine has also been developed. The device ensures the quality during a series of machining operations. This proposed process has shown to be a useful method to manufacture the required products with the reduced the response-time and cost.

  • PDF

Artificial Magnetic Conductor(AMC) Polarizer Backed Circular-Polarized(CP) Antenna (인공 자기 도체 편파 변환기를 이용한 원형 편파 안테나)

  • Chang, Ki-Hun;Ahn, Ji-Hwan;Yoon, Young-Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.5
    • /
    • pp.459-467
    • /
    • 2010
  • A new type of circularly polarized(CP) antenna that is characterized by having both low-profile and greater axial-ratio bandwidth(ARBW) beyond existing antennas is introduced through analysis of artificial magnetic conductor(AMC) polarizer, and experimentally demonstrated. Although it is made use of a linear-polarized dipole antenna with close proximity to ground plane, it is backed by AMC polarizer so as to efficiently radiate with circularly changed polarization whose ARBW is determined by the texture geometry, whereas existing antennas exhibit CP surface-current on radiators, which limit ARBW. The mechanism of the polarization conversion is theoretically analyzed for ARBW, and the experimental properties including the impedance matching, CP radiation pattern, axial-ratio pattern, ARBW, and two-port isolation are discussed.

Chine Shape Optimization for Directional Stability at High Angle of Attack (고 받음각에서의 방향 안정성 향상을 위한 Chine 형상 최적설계)

  • Park, Hyeong-Uk;Park, Mee-Young;Lee, Jae-Woo;Byun, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.825-834
    • /
    • 2008
  • Nose chine shape optimization study has been performed to maximize the directional stability at high angle of attack supersonic flow. Various chine shapes are generated using super ellipse equation. By numerically investigating the directional stability characteristics of those shapes, the baseline configuration for the shape optimization has been selected using the three-dimensional Navier-Stokes equations. The configuration is represented by the NURBS curves which can adjust the surface geometry by the control points. The response surfaces are constructed to obtain optimum shape which has high directional stability characteristics and lift-to-drag ratio. From this study, an efficient configuration design and optimization process which utilizes the parameter-based configuration generation techniques and approximation method has been established, then 29% improvement of the directional stability by strong vortexes from chine nose is accomplished.