• Title/Summary/Keyword: Surface function

Search Result 4,526, Processing Time 0.032 seconds

Application of Weight Function Method to Elliptical Arc Through Cracks at Mechanical Fastener Holes (기계적 체결홀에 존재하는 타원호형 관통균열에 대한 가중함수법의 적용)

  • Heo, Sung-Pil;Yang, Won-Ho;Chung, Ki-Hyun;Hyun, Cheol-Seung
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.304-310
    • /
    • 2001
  • Cracks at mechanical fastener holes usually nucleate as elliptical comer cracks at the faying surface of the mechanical joints and grow as elliptical arc through cracks after penetrating the opposite surface. In this study mode I, II and III stress intensity factors at two surface points of elliptical arc through cracks at mechanical fastener holes are analyzed by applying weight function method. The weight function method for two dimensional mixed-mode problem is extended to three dimensional one and it is verified.

  • PDF

Thermographic Detection of Surface Crack Using Holomorphic Function of Thermal Field

  • Kim, No-Hyu;Lim, Zong-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.3
    • /
    • pp.296-301
    • /
    • 2012
  • This paper describes an analytic method for infrared thermography to detect surface cracks in thin plates. Traditional thermographic method uses the spatial contrast of a thermal field, which is often corrupted by noise in the experiment induced mainly by emissivity variations of target surfaces. This study developed a robust analytic approach to crack detection for thermography using the holomorphic function of a temperature field in thin plate under steady-state thermal conditions. The holomorphic function of a simple temperature field was derived for 2-D heat flow in the plate from Cauchy-Riemann conditions, and applied to define a contour integral that varies depending on the existence and strength of singularity in the domain of integration. It was found that the contour integral at each point of thermal image reduced the noise and temperature variation due to heat conduction, so that it provided a clearer image of the singularity such as cracks.

The calculation of stress intensity factors by the surface integral method

  • Jin, Chi-Sub;Jang, Heui-Suk;Choi, Hyun-Tae
    • Structural Engineering and Mechanics
    • /
    • v.3 no.6
    • /
    • pp.541-553
    • /
    • 1995
  • The determination of the stress intensity factors is investigated by using the surface integral defined around the crack tip of the structure. In this work, the integral method is derived naturally from the standard path integral J. But the use of the surface integral is also extended to the case where body forces act. Computer program for obtaining the stress intensity factors $K_I$ and $K_{II}$ is developed, which prepares input variables from the result of the conventional finite element analysis. This paper provides a parabolic smooth curve function. By the use of the function and conventional element meshes in which the aspect ratio (element length at the crack tip/crack length) is about 25 percent, relatively accurate $K_I$ and K_{II}$ values can be obtained for the outer integral radius ranging from 1/3 to 1 of the crack length and for inner one zero.

A method to extract the aspherical surface equation from the unknown ophthalmic lens (형상 분석에 의한 안경렌즈의 비구면 계수 추출 방법)

  • 이호철;이남영;김건희;송창규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.430-433
    • /
    • 2004
  • The ophthalmic lens manufacturing processes need to extract the aspherical surface equation from the unknown surface since its real profile can be adjusted by the process variables to make the ideal curve without the optical aberration. This paper presents a procedure to get the aspherical surface equation of an aspherical ophthalmic lens. Aspherical form generally consists of the Schulz formula to describe its profile. Therefore, the base curvature, conic constant, and high-order polynomial coefficient should be set to the original design equation. To find an estimated aspherical profile, firstly lens profile is measured by a contact profiler, which has a sub-micrometer measurement resolution. A mathematical tool is based on the minimization of the error function to get the estimated aspherical surface equation from the scanned aspherical profile. Error minimization step uses the Nelder-Mead simplex (direct search) method. The result of the refractive power measurement is compared with the curvature distribution on the estimated aspherical surface equation

  • PDF

A New Method of the Global Interpolation in NURBS Surface: II (NURBS Surface Global Interpolation에 대한 한 방법: II)

  • 정형배
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.243-250
    • /
    • 1998
  • In parametric surface interpolation, the choice of the parameter values to the set of scattered points makes a great deal of difference in the resulting surface. A new method is developed and tested for the parametrization in NURBS surface global interpolation. This method uses the parameter value at the maximal value of relevant rational basis function, to assign the parameter values to the arbitrary set of design data. This method gives us several important advantages in geometric modeling, the freedom of the selection of knot values, the feasible transformation of the data set to the matrix, the possibility of affinite transformation between the design data and generated surface, etc.

  • PDF

Shedding; towards a new paradigm of syndecan function in cancer

  • Choi, So-Joong;Lee, Ha-Won;Choi, Jung-Ran;Oh, Eok-Soo
    • BMB Reports
    • /
    • v.43 no.5
    • /
    • pp.305-310
    • /
    • 2010
  • Syndecans, cell surface heparansulfate proteoglycans, have been proposed to act as cell surface receptors and/or coreceptors to play critical roles in multiple cellular functions. However, recent reports suggest that the function of syndecans can be further extended through shedding, a cleavage of extracellular domain. Shedding constitutes an additional level for controlling the function of syndecans, providing a means to attenuate and/or regulate amplitude and duration of syndecan signals by modulating the activity of syndecans as cell surface receptors. Whether these remaining cleavage products are still capable of functioning as cell surface receptors to efficiently transduce signals inside of cells is not clear. However, shedding transforms cell surface receptor syndecans into soluble forms, which, like growth factors, may act as novel ligands to induce cellular responses by association with other cell surface receptors. It is becoming interestingly evident that shed syndecans also contribute significantly to syndecan functions in cancer biology. This review presents current knowledge about syndecan shedding and its functional significance, particularly in the context of cancer.

A Univariate Loss Function Approach to Multiple Response Surface Optimization: An Interactive Procedure-Based Weight Determination (다중반응표면 최적화를 위한 단변량 손실함수법: 대화식 절차 기반의 가중치 결정)

  • Jeong, In-Jun
    • Knowledge Management Research
    • /
    • v.21 no.1
    • /
    • pp.27-40
    • /
    • 2020
  • Response surface methodology (RSM) empirically studies the relationship between a response variable and input variables in the product or process development phase. The ultimate goal of RSM is to find an optimal condition of the input variables that optimizes (maximizes or minimizes) the response variable. RSM can be seen as a knowledge management tool in terms of creating and utilizing data, information, and knowledge about a product production and service operations. In the field of product or process development, most real-world problems often involve a simultaneous consideration of multiple response variables. This is called a multiple response surface (MRS) problem. Various approaches have been proposed for MRS optimization, which can be classified into loss function approach, priority-based approach, desirability function approach, process capability approach, and probability-based approach. In particular, the loss function approach is divided into univariate and multivariate approaches at large. This paper focuses on the univariate approach. The univariate approach first obtains the mean square error (MSE) for individual response variables. Then, it aggregates the MSE's into a single objective function. It is common to employ the weighted sum or the Tchebycheff metric for aggregation. Finally, it finds an optimal condition of the input variables that minimizes the objective function. When aggregating, the relative weights on the MSE's should be taken into account. However, there are few studies on how to determine the weights systematically. In this study, we propose an interactive procedure to determine the weights through considering a decision maker's preference. The proposed method is illustrated by the 'colloidal gas aphrons' problem, which is a typical MRS problem. We also discuss the extension of the proposed method to the weighted MSE (WMSE).

Determination of Thermal Shock Stress Intensity Factor for Elliptical Crack by Modified Vainshtok Weight Function Method (수정 Vainshtok 가중함수법에 의한 타원균열의 열충격 응력세기계수의 결정)

  • 이강용;김종성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.463-474
    • /
    • 1995
  • Modified Vainshtok weight function method is developed. The thermal shock stress intensity factors for elliptical surface cracks existed in the thin and thick walled cylinders are determined. The present results are compared with previous solutions and shown to be good agreement with them.

Reliability Based Design Optimization for Section Shape of Simple Structures (빔 단면형상에 대한 구조물 신뢰성 최적설계)

  • 임준수;임홍재;이상범;허승진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.672-676
    • /
    • 2002
  • In this paper, a reliability-based design optimization method, which enables the determination of optimum design that incorporate confidence range for structures, is studied. Response surface method and Monte Carlo simulation are utilized to determine limit state function. The proposed method is applied to the I-type steel structure for reliability based optimal design.

  • PDF

Reliability Based Design Optimization using Moving Least Squares (이동최소자승법을 이용한 신뢰성 최적설계)

  • Park, Jang-Won;Lee, Oh-Young;Im, Jong-Bin;Lee, Soo-Yong;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.438-447
    • /
    • 2008
  • This study is focused on reliability based design optimization (RBDO) using moving least squares. A response surface is used to derive a limit-state equation for reliability based design optimization. Response surface method (RSM) with least square method (LSM) or Kriging will be used as a response surface. RSM is fast to make the response surface. On the other hand, RSM has disadvantage to make the response surface of nonlinear equation. Kriging can make the response surface in nonlinear equation precisely but needs considerable amount of computations. The moving least square method (MLSM) is made of both methods (RSM with LSM+Kriging). Numerical results by MLSM are compared with those by LMS in Rosenbrock function and six-hump carmel back function. The RBDO of engine duct of smart UAV is pursued in this paper. It is proved that RBDO is useful tool for aerospace structural optimal design problems.