• Title/Summary/Keyword: Surface fuel bed

Search Result 36, Processing Time 0.02 seconds

Microstructure of ZrC Coatings of TRISO Coated Particles by Codeposition of Free Carbon and Control of Stoichiometry (유리탄소의 동시증착에 의한 TRISO 피복입자의 ZrC 코팅층 미세구조와 화학양론비 제어)

  • Ko, Myung-Jin;Kim, Daejong;Park, Ji Yeon;Cho, Moon Sung;Kim, Weon-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.446-450
    • /
    • 2013
  • TRISO coated particles with a ZrC barrier layer were fabricated by a fluidized-bed chemical vapor deposition (FBCVD) method for a use in a very high temperature gas-cooled reactor (VHTR). The ZrC layer was deposited by the reaction between $ZrCl_4$ and $CH_4$ gases at $1500^{\circ}C$ in an $Ar+H_2$ mixture gas. The amount of free carbon codeposited with in ZrC was changed by controlling the dilution gas ratio. Near-stoichiometric ZrC phase was also deposited when an impeller was employed to a $ZrCl_4$ vaporizer which effectively inhibited the agglomeration of $ZrCl_4$ powders during the deposition process. A near-stoichiometric ZrC coating layer had smooth surface while ZrC containing the free carbon had rough surface with tumulose structure. Surface roughness of ZrC increased further as the amount of free carbon increased.

Parametric Study of an Integrated Steam Methane Reformer with Top-Fired Combustor (통합 수증기 개질 시스템의 작동 조건에 대한 수치적 연구)

  • Noh, Jung-Hun;Jung, Hye-Mi;Kim, Donghee;Um, Sukkee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.156.1-156.1
    • /
    • 2011
  • It is of great importance to predict operating parameter characteristics of an integrated fuel processor by the increased life-time and system performance. In this study, computational analysis is performed to gain fundamental insights on transport phenomena and chemical reactions in reformer which consists of preheating, steam reforming, and water gas shift reaction beds. Also, a top-fired burner locates inside of the reforming system. The combustor is providing thermal energy necessary for the steam reforming bed which is a endothermic catalytic reactor. Two-dimensional numerical model of the integrated fuel processing system is introduced for the analysis of heat and mass transport phenomena as well as surface kinetics and catalytic process. A kinetic model was developed and then computational results were compared with the experimental data available in the literature. Subsequently, parameter study using the validated steam methane reforming model was conducted by considering operating parameters, i.e. steam to carbon ratio and temperature.

  • PDF

Study on the flame height definition in Forest (낙엽층의 화염높이 산정에 관한 연구)

  • Kim, Dong-Hyun;Tanaka, Takeyoshi;Lee, Myung-Bo;Kim, Kwanl-Il
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.365-371
    • /
    • 2009
  • 산불에 있어 화염높이 산정은 복사열전달에 의한 수평 또는 수직적 화염확산을 예측하는데 있어 매우 중요한 부분이다. 화염특성 중 화염높이는 빛을 수반하는 화염(the luminous flame)의 평균높이로 확인할 수 있다. 본 연구에서는 외부 풍속과 경사 등으로 인한 화염 높이가 변화될 수 있는 조건을 제외한 산림 내 지표연소물질인 낙엽층(fuel bed)에 대한 화염높이 관측실험과 Cone calorimeter(ASTM-1354)을 이용하여Heat Release Rate 측정하였고 surface fuel에 대한 화염높이 산출식 $H_f=0.027{\dot{Q}}^{2/3}$을 도출하였다. 실험값과 개발 산정식, 기존 Heskestad(1998) 식과의 적용값 비교 결과, 소나무 낙엽의 경우, 실험값과 개발 산정식 적용값의 표준오차는 0.08, 실험값과 기존 Heskestad(1998)의 표준오차는 0.23으로 개발 산정식의 정확성이 높은 것으로 나타났다. 따라서 앞으로 이 식을 이용하여 복사열전달에 의한 화염확산해석 및 화염의 높이에 따른 수관화 전이해석 등에 활용 가능할 것으로 사료된다.

  • PDF

Measurement and Analysis of Coal Conversion Efficiency for a Coal Recirculating Fuel Cell Simulator (석탄순환형 연료전지 모사시스템용 석탄전환율 측정 및 분석법개발에 관한 연구)

  • Lee, Sangcho;Kim, Chihwan;Hwang, Munkyeong;kim, Minseong;Kim, Kyubo;Jeon, Chunghwan;Song, Juhun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.503-512
    • /
    • 2012
  • There is a new power generation system such as direct coal fuel cell (DCFC) with a solid oxide electrolyte operated at relatively high temperature. In the system, it is of great importance to feed coal continuously into anodic electrode surface for its better contact, otherwise it would reduce electrochemical conversion of coal. For that purpose, it is required to improve the electrochemical conversion efficiency by using either rigorous mixing condition such as fluidized bed condition or just by recirculating coal particle itself successively into the reaction zone of the system. In this preliminary study, we followed the second approach to investigate how significantly particle recycle would affect the coal conversion efficiency. As a first phase, coal conversion was analyzed and evaluated from the thermochemical reaction of carbon with air under particle recirculating condition. The coal conversion efficiency was obtained from raw data measured by two different techniques. Effects of temperature and fuel properties on the coal conversion are specifically examined from the thermochemical reaction.

Prediction of the Dynamic Adsorption Behaviors of the Uranium and Cobalt Ions in a Fixed Bed by Surface Modified Activated Carbon (표면개질 활성탄을 이용한 고정층에서 우라늄 및 코발트 이온의 동적 흡착거동 모사)

  • Geun-IL Park;Jung-Won Lee;Kee-Chan Song;In-Tae Kim;Kwang-Wook Kim;Myung-Seung Yang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.1 no.1
    • /
    • pp.81-92
    • /
    • 2003
  • In order to predict the dynamic behaviors of uranium and cobalt in a fixed bed at various influent pH values of liquid waste, the adsorption system is regarded as a multi-component adsorption between each ionic species in the solution. Langmuir isotherm parameters of each species were extracted by incorporating equilibrium data with the solution chemistry of the uranium and cobalt using IAST. Prediction results were in good agreement with the experimental data, except for a high concentration and pH. Although there was some limitations in predicting the cobalt adsorption, this method may be useful in analyzing a complex adsorption system where various kinds of ionic species exist in a solution.

  • PDF

Test Results of CFRP cylinder surface temperature on pool flame (Pool 화염에서 CFRP 용기 표면 온도 측정)

  • Lee, Jaehun;Kim, Youngseop;Kim, Hyo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.223.1-223.1
    • /
    • 2010
  • CFRP는 우수한 기계적 강도와 경량 특성으로 인하여 NGV/FCV용 가스를 저장하기 위한 재료로서 널리 이용되고 있다. 탄소 섬유와 에폭시로 이루어진 CFRP는 화염 노출 시 매트릭스의 열적 분해 반응에 의해 급격한 물성 변화를 일으킨다. CFRP 메트릭스가 100kW/$m^2$ 이하의 열플럭스에 노출되는 경우 표면온도 변화에 따른 용기 내부로의 열확산 메카니즘을 규명하기 위해서는 시간에 따른 경계조건의 변화를 명확히 할 필요가 있다. 본 연구에서는 Fuel bed type 가열장치의 열플럭스를 계산하였으며 계산된 열플럭스에 노출되는 CFRP 용기 표면의 온도 변화 측정 실험을 수행하였다. 또한 측정 결과를 보고된 문헌의 결과와 비교하였다.

  • PDF

A Study on Characteristics of HI Decomposition Using Pt Catalysts on ZrO2-SiO2 Mixed Oxide (ZrO2-SiO2 복합산화물에 담지된 백금 촉매의 요오드화수소 분해 특성 연구)

  • Ko, Yunki;Park, Eunjung;Bae, Kikwang;Park, Chusik;Kang, Kyoungsoo;Cho, Wonchul;Jeong, Seonguk;Kim, Changhee;Kim, Young Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.359-366
    • /
    • 2013
  • This work is investigated for the catalytic decomposition of hydrogen iodide (HI). Platinum was used as active material by loading on $ZrO_2-SiO_2$ mixed oxide in HI decomposition reaction. To obtain high and stable conversion of hydrogen iodide in severe condition, it was required to improve catalytic activity. For this reason, a method increasing dispersion of platinum was proposed in this study. In order to get high dispersion of platinum, zirconia was incorporated in silica by sol-gel synthesis. Incorporating zirconia influence increasing platinum dispersion and BET surface area as well as decreasing deactivation of catalysts. It should be able to stably product hydrogen for a long time because of inhibitive deactivation. HI decomposition reaction was carried out under the condition of $450^{\circ}C$ and 1 atm in a fixed bed reactor. Catalysts analysis methods such as $N_2$ adsorption/desorption analysis, X-ray diffraction, X-ray fluorescence, ICP-AES and CO gas chemisorption were used to measurement of their physico-chemical properties.

Study of CO2 Adsorption Characteristics on Acid Treated and LiOH Impregnated Activated Carbons (산 처리 및 LiOH 첨착 활성탄에서 이산화탄소의 흡착 특성에 대한 연구)

  • Han, Jae Uk;Kim, Dae Jung;Kang, Min;Kim, Jin Won;Kim, Ji Man;Yie, Jae Eui
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.312-316
    • /
    • 2005
  • Adsorption characteristics of $CO_2$ on activated carbons were evaluated using dynamic adsorption method in a fixed bed with acid treatment, LiOH impregnation and water vapor supply. Physical and chemical properties of the activated carbons were measured using SEM, EDS, nitrogen adsorption, FTIR and XRD. Nitric acid treatment led to the decrease in BET surface area and the increase in oxygen content of virgin activated carbon, and it produced a new functional group that included nitrogen. For the reduction of BET surface area by LiOH impregnation, the nitric acid treated activated carbon (NAC) was less than the virgin activated carbon (AC). Large particles of LiOH were present on the carbon surface when the content of LiOH was over 2 wt%. The adsorbed amount of $CO_2$ on activated carbon in a fixed bed increased with the acid treatment, LiOH impregnation and water vapor supply. The XRD results indicated that LiOH was converted to $Li_2CO_3$ after the adsorption of $CO_2$ on LiOH precursor.

Development of a drive control system of a hull cleaning robot reflecting operator's convenience (작업자 편의를 반영한 선체 청소로봇의 주행 제어시스템 개발)

  • Kang, Hoon;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.391-398
    • /
    • 2013
  • Fuel consumption in a vessel can be reduced by a hull cleaning which has been performed by the industrial robot. It is most important to attach safely and travel on the hull surface for a hull cleaning robot. In this study, therefore, we have developed a drive control system of the hull cleaning robot that enables a stable drive. In addition, operator's conveniences were reflected on the drive control system for comfort robot operation. Through a drive control experiments conducted at a hull test-bed, we demonstrated the drive control performance and conveniences of the developed drive control system.

The Study on Experimental Method of Smoldering Ground Fire in Forest Fire (뒷불 특성에 관한 실험방법 연구)

  • Kim, Dong-Hyun;Kim, Jang-Hwan;Kim, Eung-Sik
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • A smoldering ground fire can be a probable cause of reignition of surface fire when transmitted from Fermentation layer to Humus layer with temperature higher than that of ignition. Purpose of this paper is to identify experimental methodology on the potential risk of a smoldering ground fire, which is similar to the real surface fuel bed, and its combustion characteristics. The fuel model designed in this study is composed of 3 layers such as Litter layer, Fermentation layer and Humus layer and 8 Thermocouples are set through 3 layer at each boundary and in between to detect the temperature change and duration of smoldering and propagation velocity. As a result, it was observed that ignition conditions in the boundary between L layer and F layer determined transmission and non-transmisstion to F-H layer. In addition, range of critical humidity at which a smoldering ground fire was transmitted in a material layer was 33~44% and when temperature exceeds $350^{\circ}C$, likelihood of transmission of a smoldering ground fire was high. In the research, the experimental model for multi-layer smoldering ground fire is suggested and information about propagation of smoldering fire, possibility of reignition according to moisture content, propagation velocity and temperature change are obtained, Also, the built-up methods were established to help analyze basic characteristics of smoldering ground fire.