• Title/Summary/Keyword: Surface floating air cathode

Search Result 3, Processing Time 0.018 seconds

Electricity generation from surface floating air cathode microbial fuel cell according to the wastewater flow-rate and the ratio of cathode surface area to anode surface area (표면부유 공기양극 미생물연료전지에서 유량 및 전극 면적비에 따른 전력생산 특성)

  • Yoo, Kyu-Seon;Song, Young-Chae;Woo, Jung-Hui;Chung, Jae-Woo;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.591-596
    • /
    • 2011
  • Surface floating air cathode microbial fuel cell (MFC) having horizontal flow was developed for the application of MFC technology. RVC (Reticulated vitreous carbon) coated with anyline was used as anode electrode and carbon cloth coated with Pt (5.0 g Pt/$m^2$, GDE LT250EW, E-TEK) was used as cathode electrode. As results of continuous operation with changing the flow rate from 4.3 mL/min to 9.5 mL/min, maximum power density of 4.5 W/$m^3$ was acquired at 5.4 mL/min, which was at 0.35 m/hr of flow velocity under anode electrode. When the ratio of cathode surface area to anode surface area($A_c/A_a$) was changed to 1.0, 0.5, and 0.25, the maximum power density of 2.7 W/$m^3$ was shown at the ratio of 1.0. As the ratio decreased from 1.0 to 0.25, the power density also decreased, which is caused by increasing the internal resistance resulted from reducing the surface area to contact with oxygen. Actually, internal resistances of the ratio of 1.0, 0.5, and 0.25 were 63.75${\Omega}$, 142.18${\Omega}$, and 206.12${\Omega}$, respectively.

Air Fluid Analysis between Porous PE-Plate and Glass in Air-Floating FPD Conveyor System (공기부상 FPD 이송장치에서 다공질판과 글래스 사이의 공기유동 해석)

  • Lho, Tae-Jung;Shon, Tae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.878-885
    • /
    • 2008
  • The FPDs(Flat Panel Displays) such as LCD(Liquid Crystal Display) and PDP(Plasma Display Panel) and OLED(Organic Light Emitting Diode), recently, have been substituted for CRT(Cathode Ray Tube) displays because they have a convex surface, small volume, light weight and lower electric power consumption. The productivity of FPDs is greatly dependent on the area of thin glass panel with 0.6 - 0.8mm thickness because FPDs are manufactured by cutting a large-scaled thin glass panel with patterns to the required product dimensions. So FPD's industries are trying to increase the area of thin glass panel. For example, the thin glass panel size of the 8th generation is 2,200mm in width, 2,600mm in length and 0.7mm in thickness. The air flows both in the thin glass panel and in the porous PE-plate surface were modeled and analyzed, from which a working condition was estimated. The thin glass panel on the porous PE-plate surface with self-lubricating characteristics was investigated and compared with that on the square duct floating bar surface with many holes of 1mm diameter when the thin glass panel contacts the floating bar surface due to malfunction of electric power supply.

Development of Air-floating Conveyor System for FPD (FPD용 공기부상 이송컨베이어 시스템 개발)

  • Lho, Tae-Jung;Lee, Wook-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.39-45
    • /
    • 2009
  • The CRT(Cathode Ray Tube) displays have been substituted for FPDs(Flat Panel Displays) such as LCD(Liquid Crystal Display) and PDP(Plasma Display Panel) because they have a convex surface, large volume and heavy weight. The productivity of FPDs is greatly dependent on the area of thin glass panel with $0.6{\sim}0.8mm$ thickness because FPDs are manufactured by cutting a large-scaled thin glass panel with patterns to the required product dimensions. So FPD's industries are trying to increase the area of thin glass Panel. Through FEM(Finite Element Method) analysis and fluid analysis, we developed an non-contact and air-floating conveyor system which consists of transport-module, distributor, horizontal/vertical changer and controller for the 7th generation glass panel (2,200mm in width, 1,870mm in length and 0.7mm in thickness). The design technology developed in this study can be effectively applied to a conveyor system for a larger-scaled thin glass panel.