• 제목/요약/키워드: Surface films

검색결과 4,894건 처리시간 0.037초

Stress-induced the enhancement of magnetoresistance in La0.75Ca0.25MnO3 thin films grown on Si (100) substrates

  • Lee, J.C.;D.G, Yu;S.Y. Ie;K.H. Jeong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.131-131
    • /
    • 2000
  • We witnessed the enhancement of mangetoresistance (MR) in La0.75Ca0.25MnO3 thin films grown on Si (100) substrates by RF magnetron sputtering. The films are polycrystalline with (100) and (110) orientations. The lattice constants of films are reduced as much as 0.9% compared to the one of the bulk sample, which proves that the compressive stress on films was imposed by Si sbustrate. It is found that the MR value (Δ$\rho$/$\rho$0) of films are 0.33, 0.29 and 0.27 under a magnetic field of 1.5T for each films with deposition temperature of $700^{\circ}C$, 75$0^{\circ}C$ and 80$0^{\circ}C$, respectively. The correlation between the MR values and lattice constants of films is discussed. It is concluded that the compressive stress on films cause the enhancement of MR values of thin films grown on Si (1000 substrates. Some mechanism of compressive stress induced by Si substrate is suggested.

  • PDF

금속의 양극산화처리 기술 (Anodic Oxidation Treatment Methods of Metals)

  • 문성모
    • 한국표면공학회지
    • /
    • 제51권1호
    • /
    • pp.1-10
    • /
    • 2018
  • Anodic oxidation treatment of metals is one of typical surface finishing methods which has been used for improving surface appearance, bioactivity, adhesion with paints and the resistances to corrosion and/or abrasion. This article provides fundamental principle, type and characteristics of the anodic oxidation treatment methods, including anodizing method and plasma electrolytic oxidation (PEO) method. The anodic oxidation can form thick oxide films on the metal surface by electrochemical reactions under the application of electric current and voltage between the working electrode and auxiliary electrode. The anodic oxide films are classified into two types of barrier type and porous type. The porous anodic oxide films include a porous anodizing film containing regular pores, nanotubes and PEO films containing irregular pores with different sizes and shapes. Thickness and defect density of the anodic oxide films are important factors which affect the corrosion resistance of metals. The anodic oxide film thickness is limited by how fast ions can migrate through the anodic oxide film. Defect density in the anodic oxide film is dependent upon alloying elements and second-phase particles in the alloys. In this article, the principle and mechanisms of formation and growth of anodic oxide films on metals are described.

알카리 표면개질 처리가 무전해 구리 도금피막과 폴리이미드 필름의 접합력에 미치는 효과 (Effect of Alkali Surface Modification on Adhesion Strength between Electroless-Plated Cu and Polyimide Films)

  • 손이슬;이호년;이홍기
    • 한국표면공학회지
    • /
    • 제45권1호
    • /
    • pp.8-14
    • /
    • 2012
  • The effects of the alkali surface modification process on the adhesion strength between electroless-plated Cu and polyimide films were investigated. The polyimide surfaces were effectively modified by alkali surface treatments from the hydrophobic to the hydrophilic states, and it was confirmed by the results of the contact angle measurement. The surface roughness increased by alkali surface treatments and the adhesion strength was proportional to the surface roughness. The adhesion strength of Cu/polyimide interface treated by KOH + EDA (Ethylenediamine) was 874 gf/cm which is better than that treated by KOH and KOH + $KMnO_4$. The results of XPS spectra revealed that the alkali treatment formed oxygen functional groups such as carboxyl and amide groups on the polyimide films which is closely related to the interfacial bonding mechanism between electroless-plated Cu and polyimide films. It could be suggested that the species and contents of functional group on polyimide films, surface roughness and contact angle were related with the adhesion strength of Cu/polyimide in combination.

압축기 부품소재 표면 적용을 위한 탄소 기반 고체 윤활막의 마찰 및 마모 특성 평가 (Evaluation of Friction and Wear Characteristics of Carbon-based Solid Lubricant Films for Surface Application of Compressor Parts)

  • 이성준;김창래
    • Tribology and Lubricants
    • /
    • 제38권5호
    • /
    • pp.222-226
    • /
    • 2022
  • Between diaphragms made of stainless steel (SUS), which is the main component of a hydrogen gas compressor, micro-slip occurs owing to repeated bending, resulting in scratches on the surface. The surface scratch of the compressor part is a problem with airtightness, which reduces the efficiency of the compressor; in severe cases, damage is a possibility. In this study, the changes in friction and wear characteristics due to the surface polishing of SUS and carbon-based solid lubricant films (graphene and CNT) were analyzed. Bare SUS, polished SUS, graphene film, and CNT film specimens were prepared. The surface roughness of the SUS was significantly reduced by surface polishing but increased by carbon-based solid lubricating films. In contrast, the friction coefficient maintained a similar value after surface polishing but was significantly reduced by the carbon-based solid lubricant films. In particular, the graphene film exhibited the lowest initial friction coefficient, while the CNT film exhibited the lowest overall average friction coefficient. Regarding the wear rate, polished SUS exhibited the lowest value, but the surface condition of the wear track showed that the carbon-based solid lubricating films were relatively less damaged. Although the wear rate measured was largely attributed to the solid lubricating film peeling off, the SUS surface under the film was considered protected.

AZ31 Mg합금의 PEO피막 형성거동에 미치는 인산나트륨 농도의 영향 (Effect of Na3PO4 Concentration on The Formation Behavior of PEO films on AZ31 Mg Alloy)

  • 문성모;김주석
    • 한국표면공학회지
    • /
    • 제52권5호
    • /
    • pp.265-274
    • /
    • 2019
  • Formation behavior of PEO (Plasma Electrolytic Oxidation) films on AZ31 Mg alloy was investigated under application of 310 Hz AC as a function of $Na_3PO_4$ concentration from 0.02 M to 0.2 M. Film formation voltage and in-situ observation of arcs generated on the specimen surface were recorded with time, and surface morphologies of the PEO films were investigated using optical microscopy, confocal scanning laser microscopy and scanning electron microscopy. PEO film formation voltage decreased linearly with increasing $Na_3PO_4$ concentration which is attributed to the increase of solution pH. PEO films were grown uniformly over the entire surface in $Na_3PO_4$ solutions between 0.05 M and 0.1 M. However, non-uniform PEO films with white spots were formed in $Na_3PO_4$ solutions containing more than 0.1 M. Thickness and roughness of PEO films on AZ31 Mg alloy increased linearly with increasing $Na_3PO_4$ concentration and their increasing rates appeared to be much higher under 1 M than above 1 M. The experimental results suggest that phosphate ions can contribute to the formation of PEO films but higher $Na_3PO_4$ concentration more than 1 M results in local damages of PEO films due to repeated generation of white arcs at the same surface site of AZ31 Mg alloy.

MOCVD를 이용한 GaAs 박막의 에피성장 (Epitaxial Growth of GaAs Thin Films Using MOCVD)

  • 소명기
    • 산업기술연구
    • /
    • 제24권B호
    • /
    • pp.59-64
    • /
    • 2004
  • GaAs thin films were grown epitaxially by MOCVD method on (001) GaAs substrate. And as a surfactant, Bi(bismuth) thin films were deposited on GaAs buffer layer by using TMBi(trimethylbismuth) source. In-situ reflectance difference spectroscopy(RDS) was used to monitor the surface reconstruction of GaAs and Bi thin films. As the results, under the exposure of TBAs(tertiarybuthylarsine) and hydrogen atmosphere, the surface reconstruction of GaAs was changed from As-rich c($4{\times}4$) to As-rich ($2{\times}4$), which was due to the adsoption and desorption of As dimers. The first bismuth surface related RDS signal was reported. At the deposition temperature of $450^{\circ}C$, Bi-terminated GaAs surface showed the RDS spectrum similar to that of Sb-terminated GaAs surface, possibly a ($2{\times}4$) surface. And Bi surface layers were rapidly evaporated with increasing the deposition temperature($550^{\circ}C$), finally becoming As-terminated ($2{\times}4$) surface.

  • PDF

Physical properties of TiN thin films deposited by grid-assisted magnetron sputtering

  • Jung, Min J.;Nam, Kyung-H.;Han, Jeon-G.;Shaginyan, Leonid-R.
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2002년도 춘계학술발표회 초록집
    • /
    • pp.46-46
    • /
    • 2002
  • It is well known that thin film growth and surface morphology can be substantially modified by ion-bombardment during the deposition. This is particularly important in case of thin-film deposition at low temperatures where the film growth occurs under highly nonequilibrium conditions. An attractive way to promote crystalline growth and surface morphology is deposition of additional energy in to the surface of the growing film by bombardment with hyperthermal particles. We were deposited crystalline Ti and TiN thin films on Si substrate by magnetron sputtering method with grid. Its thin films were highly smoothed and dense as increasing grid bias. In order explore the benefits of a bombardment of the growing film with high energetic particles. Ti and TiN films were deposited on Si substrates by an unbalanced magnetron sputter source with attached grid assembly for energetic ion extraction. Also, we have studied the variation of the plasma states by Langmuir probe and Optical Emission Spectroscopy (OES). The epitaxial orientation. microstructual characteristics. electrical and surface properties of the films were analyzed by XRD. SEM. Four point probe and AFM.

  • PDF

Surface Morphology, Microstructure and Mechanical Properties of Thin Ag Films

  • Shugurov, Artur;Panin, Alexey;Chun, Hui-Gon;Oskomov, Konstantin
    • 한국분말재료학회지
    • /
    • 제10권3호
    • /
    • pp.190-194
    • /
    • 2003
  • Thin Ag films deposited onto $SiO_2/Si$ substrates by DC magnetron sputtering and thereafter annealed ,it temperatures 100-50$0^{\circ}C$ are investigated by scanning tunneling and atomic forte microscopy. It is shown that the film surface topography and microstructure are considerably changed as a result of annealing. To provide a quantitative estimation of the surface topography changes of Ag films the surface fractal dimension was calculated. Elasticity and hardness of the films are studied by a nanoindentation technique. The films are found to have value of elastic modulus close to that of bulk silver while their hardness and yield stress are essentially higher.

표면 플라즈몬 공명 측정에 의한 금속 박막의 광학 상수와 두께 결정 (Determination of Optical Constants and Thickness of Thin Metal Films by Measurement of Surface Plasmon Resonance)

  • 황보창권;최철재;최동철
    • 한국광학회지
    • /
    • 제2권2호
    • /
    • pp.59-66
    • /
    • 1991
  • 표면 플라즈몬 공명이 일어나는 공명각과 최적 두께를 여러 금속 박막에 대해 어드미턴스 다이어그램을 이용하여 계산하였으며, 표면 플라즈몬 공명에서 측정한 반사율과 이론치를 곡선 맞춤하여 은박막과 알루미늄 박막의 광학 상수와 두께를 결정하였다. 한 파장에 대해 두 개의 해가 존재하므로 알곤 레이저의 두 파장에서 같은 두께를 갖는 해를 광학 상수의 유일 해로 선택하였으며, 금속 박막을 공기 중에 노출시킬 경우, 박막의 표면 변화에 의해 이동된 표면 플라즈몬 공명으로부터 변화된 금속 박막의 광학 상수를 결정하였다.

  • PDF

Wetting Properties of Biopolyester Films Prepared by Thermo-Compression Method

  • Rhim, Jong-Whan;Hong, Seok-In
    • Food Science and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.234-237
    • /
    • 2007
  • Water resistance of three biopolyester films, such as poly-L-lactate (PLA), poly-hydroxybutyrate-co-valerate (PHBV), and Ecoflex, and low density polyethylene (LDPE) film was investigated by measuring contact angle of various probe liquids on the films. The properties measured were initial contact angle of water, dynamic change of the water contact angle with time, and the critical surface energy of the films. Water contact angle of the biopolyester films ($57.62-68.76^{\circ}$) was lower than that of LDPE film ($85.19^{\circ}$) indicating biopolyester films are less hydrophobic. The result of dynamic change of water contact angle also showed that the biopolyester films are less water resistant than LDPE film, but much more water resistant than cellulose-based packaging materials. Apparent critical surface energy for the biopolyester films (35.15-38.55 mN/m) was higher than that of LDPE film (28.59 mN/m) indicating LDPE film is more hydrophobic.