• 제목/요약/키워드: Surface direct deformation

검색결과 68건 처리시간 0.026초

Analysis of the relationship between volcanic eruption and surface deformation in volcanoes of the Alaskan Aleutian Islands using SAR interferometry

  • Lee, Seulki;Lee, Chang-Wook
    • Geosciences Journal
    • /
    • 제22권6호
    • /
    • pp.1069-1080
    • /
    • 2018
  • The Alaskan Aleutian Islands form one of the world's largest volcanic island chains. The islands are exposed to both direct and indirect damage from continuous volcanic eruptions. Surface deformation is mostly observed before volcanic eruption, but with some volcanoes, such as Ontake Volcano, deformations cannot be detected. In this study, we analyzed volcanic eruptions in the Alaskan Aleutian Islands, which is a region of frequent volcanic eruptions. Based on our results, we predicted the type of eruption that would occur on Baekdusan Volcano according to the presence or absence of surface deformation. For this purpose, 10 sites were selected from areas where recent volcanic activity had occurred in the Aleutian Islands. Additionally, Advanced Land Observing Satellite Phased Array-type L-band Synthetic Aperture Radar (ALOS-PALSAR) and European Remote Sensing (ERS)-1/2 satellite data were obtained from 10 experimental sites. Based on the radar satellite data, the volcanic surface deformations were identified, and the characteristics of the volcanic eruption were quantitatively calculated by determining the presence of surface deformation. The results of this study should facilitate the process of correlation between volcanic eruption and surface deformation.

공간 가상 디자인을 위한 다해상도 곡면트리밍을 이용한 넙스곡면 조각효과 렌더링 (NURBS Surface Rendering of Sculpting Effect Using Multiresolution Surface Trimming for Spatial Virtual Design)

  • 권정훈;김희준;채영호
    • 한국CDE학회논문집
    • /
    • 제11권6호
    • /
    • pp.403-411
    • /
    • 2006
  • NURBS surfaces have been widely used in engineering design since it can create a smooth surface using minimal numbers of data. But deformation of the surfaces is quite difficult especially for the detailed modification. Also, NURBS surface deformation processes need many inputs, and it is not easy to be implemented in 3D virtual system. In this paper, both the surface trimming and multi-resolution surface are used for the detailed sculpting including sharp edges of NURBS surface. QuadTree is used to separate cleanly the target surface with the surface for sculpting effect. Simple user strokes are also used for the sculpting target curves and GOMS(Goals, Operators, Methods, Selection Rules) model is applied to verify the efficiency of the proposed sculpting process.

가상 공간 디자인을 위한 3차원 목표곡선을 이용한 곡면 변형 (Surface Deformation by using 3D Target Curve for Virtual Spatial Design)

  • 권정훈;이정인;채영호
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권10호
    • /
    • pp.868-876
    • /
    • 2006
  • 2차원 평면 입력을 통한 모델링에서는 입력 값을 3차원 데이타로 바꾸기 위한 기능과 메뉴들이 필요하지만 가상공간 디자인을 위한 3차원 입력 시스템은 입력 값을 곧바로 3차원 데이타로 변환될 수 있다. 하지만 3차원 입력시스템에서 효율적인 곡면 모델링 방법, 특히 곡면 변형 방법은 제안되지 않고 있다. 본 논문에서는 기존의 변형방법이 3차원 입력시스템에서 적용되었을 때 발생할 수 있는 문제점을 제시한다. 그리고 디자이너가 접근하기 쉬운 목표곡선을 이용한 변형을 제안한다. 이와 같은 3차원 목표곡선을 이용한 변형을 통해 디자이너가 보다 쉽게 3차원 입력시스템에 접근하여 가상공간 스케칭 및 디자인을 구현할 수 있다.

절리면 거\ulcorner각의 손상을 고려한 개별체 절리 유한요소 (An Isoparmetric Kiscrete Joint Element with Joint Surface Degradation)

  • 이연규;이정인
    • 터널과지하공간
    • /
    • 제7권1호
    • /
    • pp.20-30
    • /
    • 1997
  • A discrete joint finite element with joint surface degradation was developed to investigate the shear behavior of rough rock joint. Isoparametric formulation was used for facilitating the implementation of the element in existing Finite Element Codes. The elasto-plastic joint deformation model with the discontinuity constitutive law proposed by Plesha was applied to the element. The reliability of the developed finite element code was successfully testified through numerical direct shear tests conducted under both constant normal stress and constant normal displacement conditions. The result of the numerical direct shear test showed that the code can capture characteristic deformation features envisaged in the direct shear test of rough rock joint.

  • PDF

유한 요소 해석을 활용한 직결 주축의 열적 특성 평가 (Evaluation of Thermal Characteristics of a Direct-Connection Spindle Using Finite Element Co-Analysis)

  • 김태원;최진우
    • 한국생산제조학회지
    • /
    • 제22권2호
    • /
    • pp.228-234
    • /
    • 2013
  • This study focuses on development of a finite element model for analysis of thermal characteristics of a direct-connection spindle of a machining center by joint simulation of heat transfer and thermal deformation. Two finite element analyses were carried out procedurally for heat transfer, first, to identify temperature distribution of components of the spindle and then for thermal deformation to identify their structural behavior based on the temperature distribution. It was assumed that the heat transfer between a component revolving and the surrounding air is identical to that between a flat plate and the running air on it and the heat transfer is based on a uniform surface heat flux for turbulent flow. The results from the analyses were compared with those from experiments to validate the finite element model.

구리-타이타늄 복합선재의 번들압출 성형특성 (Forming Characteristics for the Bundle Extrusion of Cu-Ti Bimetal Wires)

  • 이용신;김중식;윤상헌;이호용
    • 소성∙가공
    • /
    • 제18권4호
    • /
    • pp.342-346
    • /
    • 2009
  • Forming characteristics for the bundle extrusion of Cu-Ti bimetal wires are investigated, which can identify the process conditions for weak mechanical bonding at the contact surface during the direct extrusion of a Cu-Ti bimetal wire bundle. Bonding mechanism between Cu and Ti is assumed as a cold pressure welding. Then, the plastic deformation at the contact zone causes mechanical bonding and a new bonding criterion for pressure welding is developed as a function of the principal stretch ratio and normal pressure at the contact surface by analyzing micro local extrusion at the contact zone. The averaged deformation behavior of Cu-Ti bimetal wire is adopted as a constitutive behavior at a material point in the finite element analysis of Cu-Ti wire bundle extrusion. Various process conditions for bundle extrusions are examined. The deformation histories at the three points, near the surface, in the middle and near the center, in the cross section of a bundle are traced and the proposed new bonding criterion is applied to predict whether the mechanical bonding at the Cu-Ti contact surface happens. Finally, a process map for the direct extrusion of Cu-Ti bimetal wire bundle is proposed.

구리-타이타늄 이중미세선재 번들압출의 공정지도 개발 (Development of A Process Map for Bundle Extrusion of Cu- Ti Bimetal Wires)

  • 김중식;이용신;윤상헌
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.393-397
    • /
    • 2005
  • A process map has been developed, which can identify the process conditions for weak mechanical bonding at the contact surface during the direct extrusion of a Cu-Ti bimetal wire bundle. Bonding mechanism between Cu and Ti is assumed as a cold pressure welding. Then, the plastic deformation at the contact zone causes mechanical bonding and a new bonding criterion fur pressure welding is developed as a function of the principal stretch ratio and normal pressure at the contact surface by analyzing micro local extrusion at the contact zone. The averaged deformation behavior of Cu-Ti bimetal wire is adopted as a constitutive behavior at a material point in the finite element analysis of Cu-Ti wire bundle extrusion. Various process conditions for bundle extrusions are examined. The deformation histories at the three points, near the surface, in the middle and near the center, in the cross section of a bundle are traced and the proposed new bonding criterion is applied to predict whether the mechanical bonding at the Cu-Ti contact surface happens. Finally, a process map for the direct extrusion of Cu-Ti bimetal wire bundle is proposed.

  • PDF

Reliability analysis of laminated composite shells by response surface method based on HSDT

  • Thakur, Sandipan N.;Chakraborty, Subrata;Ray, Chaitali
    • Structural Engineering and Mechanics
    • /
    • 제72권2호
    • /
    • pp.203-216
    • /
    • 2019
  • Reliability analysis of composite structures considering random variation of involved parameters is quite important as composite materials revealed large statistical variations in their mechanical properties. The reliability analysis of such structures by the first order reliability method (FORM) and Monte Carlo Simulation (MCS) based approach involves repetitive evaluations of performance function. The response surface method (RSM) based metamodeling technique has emerged as an effective solution to such problems. In the application of metamodeling for uncertainty quantification and reliability analysis of composite structures; the finite element model is usually formulated by either classical laminate theory or first order shear deformation theory. But such theories show significant error in calculating the structural responses of composite structures. The present study attempted to apply the RSM based MCS for reliability analysis of composite shell structures where the surrogate model is constructed using higher order shear deformation theory (HSDT) of composite structures considering the uncertainties in the material properties, load, ply thickness and radius of curvature of the shell structure. The sensitivity of responses of the shell is also obtained by RSM and finite element method based direct approach to elucidate the advantages of RSM for response sensitivity analysis. The reliability results obtained by the proposed RSM based MCS and FORM are compared with the accurate reliability analysis results obtained by the direct MCS by considering two numerical examples.

Equivalence Principles Based Skin Deformation of Character Animation

  • You, L.H.;Chaudhry, E.;You, X.Y.;Zhang, Jian J.
    • International Journal of CAD/CAM
    • /
    • 제9권1호
    • /
    • pp.61-69
    • /
    • 2010
  • Based on the equivalence principles of physical properties, geometric properties and externally applied forces between a surface and the corresponding curves, we present a fast physics and example based skin deformation method for character animation in this paper. The main idea is to represent the skin surface and its deformations with a group of curves whose computation incurs much less computing overheads than the direct surface-based approach. The geometric and physical properties together with externally applied forces of the curves are determined from those of the surface defined by these curves according to the equivalence principles between the surface and the curves. This ensures the curve-based approach is equivalent to the original problem. A fourth order ordinary differential equation is introduced to describe the deformations of the curves between two example skin shapes which relates geometric and physical properties and externally applied forces to shape changes of the curves. The skin deformation is determined from these deformed curves. Several examples are given in this paper to demonstrate the application of the method.

초경합금재의 전자현미경(SEM)내 마이크로 절삭 (Micro-cutting of Cemented Carbides with SEM)

  • 허성중
    • 한국정밀공학회지
    • /
    • 제20권9호
    • /
    • pp.55-62
    • /
    • 2003
  • This paper investigates the micro-cutting of cemented carbides using PCD (polycrystalline diamond) and PCBN (polycrystalline cubic boron nitride) cutting tools are performed with SEM direct observation method. The purpose of this study is to make clear the cutting mechanism of cemented carbides and the fracture of WC particles at the plastic deformation zone in orthogonal micro-cutting. And also to achieve systematic understanding, the effect of machining parameter on chip formation and machined surface was studied, including cutting speed, depth of cut and various tool rake angle. Summary of the results are shown below. (1) Three type of chip formation process have been proposed by the results of the direct observation in orthogonal micro-cutting of cemented carbide materials. (2) From the whole observation of chip formation, primary WC particles are crushed and/or fine grained in the shearing deformation zone. A part of them are observed to collide directly with a cutting edge of tool by following the micro-cutting. (3) Surface finish, surface morphology and surface integrity is good to obtain by cutting with PCD cutting tool compared with PCBN. (4) The machined surface has the best quality near the low cutting speed of 10${\mu}m$/sec with a cutting depth of 10 ${\mu}m$ using 0$^\circ$ rake angle and 3$^\circ$ flank angle in this condition, but it was found that excessively low speed, for example the extent of 1 ${\mu}m$/sec, is not good enough to select for various reason.