• Title/Summary/Keyword: Surface diffusion

Search Result 1,618, Processing Time 0.036 seconds

Diffusion of passive contaminant from a line source in a neutrally stratified turbulent boundary layer

  • Kurbatskii, Albert F.;Yakovenko, Sergey N.
    • Wind and Structures
    • /
    • v.3 no.1
    • /
    • pp.11-21
    • /
    • 2000
  • This paper presents results of modeling of the passive contaminant diffusion from a continuous line finite-size source located on the underlying surface of a neutral near-ground atmospheric layer obtained by using the non-local two-parameteric turbulence model and the transport equation of mean concentration. In the proposed diffusion model the turbulent diffusion coefficient changes not only with the vertical coordinate but also with the distance downstream from the source according to the experimental data. The results of the modeling reproduce structural features of the concentration field.

Diffusion Bonding of Mo with Coating Layer (코팅층을 이용한 몰리브덴의 확산접합)

  • 박재현;권영각;장래웅
    • Journal of Welding and Joining
    • /
    • v.10 no.3
    • /
    • pp.26-39
    • /
    • 1992
  • Diffusion bonding of Mo was performed by using the metallic coating of Cu and Cr on the surface to be bonded. Joint characteristics of Mo with or without coating layer were compared in metallurgical and fractograpical aspects. The results showed that the diffusion bonding with coating layer, especially with Cu coating, increased the bending strength of joint. Variation of heating cycle(elevation of temperature for a moment) did not affect significantly the mechanical properties of joint. Fractographical analysis showed that the fracture of joint bonded with Cr coating occurred at the coating layer, while that with Cu coating occurred at the base metal.

  • PDF

Crack and Time Effect on Chloride Diffusion Coefficient in Nuclear Power Plant Concrete with 1 Year Curing Period (1년 양생된 고강도 원전 콘크리트의 염화물 확산에 대한 균열 및 시간효과)

  • Chun, Ju-Hyun;Ryu, Hwa-Sung;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.83-90
    • /
    • 2017
  • Concrete structure for nuclear power plant is mass concrete structure with large wall depth and easily permits cracking in early age due to hydration heat and drying shrinkage. It always needs cooling water so that usually located near to sea shore. The crack on concrete surface permits rapid chloride intrusion and also causes more rapid corrosion in the steel. In the study, the effect of age and crack width on chloride diffusion is evaluated for the concrete for nuclear power plant with 6000 psi strength. For the work, various crack widths with 0.0~1.4 mm are induced and accelerated diffusion test is performed for concrete with 56 days, 180days, and 365 days. With increasing crack width over 1.0mm, diffusion coefficient is enlarged to 2.7~3.1 times and significant reduction of diffusion is evaluated due to age effect. Furthermore, apparent diffusion coefficient and surface chloride content are evaluated for the concrete with various crack width exposed to atmospheric zone with salt spraying at the age of 180 days. The results are also analyzed with those from accelerated diffusion test.

Study for Transport and Separation Mechanisms of $CO_2/N_2$ Mixture on Organic Templating Silica/Alumina Composite Membrane by Using Generalized Maxwell Stefan model (Generalized Maxwell Stefan 모형을 이용한 유기 템플레이팅 실리카/알루미나 복합막의 $CO_2/N_2$ 혼합물의 투과/분리 기구 해석)

  • Lee Chang-Ha;Moon Jong-Ho;Kim Min-Bae;Kang Byung-Sub;Hyun Sang-Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.3 s.24
    • /
    • pp.43-51
    • /
    • 2004
  • In this study, gas permeation and separation characteristics of $CO_2$ and $N_2$ on nano-porous TPABr(Tetrapropylammoniumbromide) templating silica/alumina composite membrane were studied by using GMS (Generalized Maxwell Stefan) model. Since the transport mechanisms of meso-porous alumina support are Knudsen diffusion and viscous diffusion(or poiseulle flow), they can be identified by DGM (dusty gas model). The transport mechanism of TPABr templating silica layer, which would contribute mainly to the separation of $N_2/CO_2$ mixture, showed surface diffusion rather than pore diffusion. Therefore, the oermeationjseparation mechanisms in multi-component suface diffusion were successfully analyzed by the GMS model. In the separation of $N_2/CO_2$ mixture using the composite membrane, $CO_2$, the strongadsorbate, was permeated through the membrane more than Na due to the pore-blocking phenomena of $CO_2$ by adsorption isotherm and solace diffusion.

  • PDF

Diffusion Characteristics of Chloride ion under Single and Combined Attacks in Concrete Structures (콘크리트 구조물의 단일 및 복합열화 환경하에서의 염소이온 확산특성)

  • 오병환;강의영;인광진;이성규;서정문
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.708-717
    • /
    • 2002
  • Durability is a major concern in the design and construction of concrete structures which are located in the sea environments. In particular, the combined action of chlorides, sulfates, and carbonation nay influence greatly the deterioration behavior of concrete structures. The purpose of the present study is to explore the diffusion characteristics of chloride ions in concrete structures under combined deterioration conditions. The present test results indicate that the chloride penetration into concrete structures is more pronounced under combined attacks of chlorides, sulfates and carbonation. The diffusion coefficients and surface chloride contents were found to increase under combined multiple deterioration conditions. The present study provides quantitatively the penetration and diffusion characteristics of chloride ions in concrete structures under various deterioration conditions. The results of present study may be efficiently used for the realistic design of concrete structures under combined deterioration conditions.