• Title/Summary/Keyword: Surface deformation

Search Result 1,975, Processing Time 0.034 seconds

The Effect of Surface Micro Texturing on Friction and Wear of Polyoxymethylene (POM 마찰 및 마모에 대한 마이크로 표면 텍스처링의 영향)

  • Lee, Jae-Bong;Cho, Min-Haeng
    • Tribology and Lubricants
    • /
    • v.25 no.3
    • /
    • pp.141-149
    • /
    • 2009
  • The effect of micro-cavities fabricated using laser surface texturing (LST) technique on polyoxymethylene (POM) surface was studied in terms of heat affected zone (HAZ), cavity geometry, surface roughness, deformation of cavity along with sliding cycles, and tribological characteristics. Cavity process parameters were lamp current, process time, and the stream of air used to minimize the flow of molten polymer into cavity. Especially, the deformation of cavity geometry was extensively studied to provide deep insight into morphological analysis of the cavities. Also, this paper presents the behavior of friction and wear of POM specimens as a function of sliding cycles.

A study on the prediction of tunnel crown and surface settlement in tunneling as a function of deformation modulus and overburden

  • Kim Seon-Hong;Moon Hyun-Koo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.129-141
    • /
    • 2003
  • The precise prediction of ground displacement plays an important role in planning and constructing tunnels. In this study, an equation for predicting the surface and crown settlement is suggested by examining the theories of ground movement caused by tunnel excavation. From the 3D numerical modeling, the reinforcement effect of UAM (Umbrella Arch Method) is quantitatively analyzed with respect to deformation modulus and overburden. By using a regression technique for the numerical results, an equation for predicting the settlement is suggested.

  • PDF

Shadow Mask 제조공정의 열변형특성(I)

  • 손순식;서윤철;강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.102-109
    • /
    • 1997
  • The surface deformation of shadow mask was studied by the experiments and numerical analysis for process improvement and delet of the stabilizing process in the shadow mask manufaturing line. To inverigate the thermal deformation of shadow mask with and without stabilizing process mask, data of spring strength, frame flatness, frame magnetic force and a mask surface curvature were measured. The tube characteristics of two kind of shadow masks were also investigated.

  • PDF

Distortion Response of Motor Axis with Permanent Magnet as Shrink Fitting (영구자석 여자전동기 회전부 축의 열박음에 따른 변형특성)

  • Woo, Byung-Chul;Jeong, Yeon-Ho;Kang, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1451-1453
    • /
    • 2003
  • Shrink fitting is often used to replace conventional mechanical fasteners and fastening methods. Localized heating of the mating surface provides temporary expansion and allows slip fit assembly. The resulting interference fit exhibits exceptional strength without surface deformation at ambient temperatures. We studied an analysing method to find out a deformation of motor axis with shrink fitting of thermal expansion.

  • PDF

InSAR Studies of Alaska Volcanoes

  • Lu Zhong;Wicks Chuck;Dzurisin Dan;Power John
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.1
    • /
    • pp.59-72
    • /
    • 2005
  • Interferometric synthetic aperture radar (InSAR) is a remote sensing technique capable of measuring ground surface deformation with sub-centimeter precision and spatial resolution in tens-of­meters over a large region. This paper describes basics of InSAR and highlights our studies of Alaskan volcanoes with InSAR images acquired from European ERS-l and ERS-2, Canadian Radarsat-l, and Japanese JERS-l satellites.

Effect of Deformation Induced Martensite Transformation on the Mechanical Properties in Austenitic Stainless Steel with High Mn (고 Mn 오스테나이트계 스테인리스강의 기계적성질에 미치는 가공유기 마르텐사이트 변태의 영향)

  • Hur, T.Y.;Han, H.S.;Lee, S.H.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.16 no.3
    • /
    • pp.51-56
    • /
    • 2012
  • The effect of deformation induced martensite transformation on the mechanical properties in austenitic stainless steel with high Mn was studied. ${\alpha}$'-martensite was formed by deformation in austenitic stainless steel with high Mn. Deformation induced ${\alpha}$'-martensite was formed with surface relief by cold rolling. With the increase of deformation degree, volume fraction of deformation induced martensite was increased rapidly in early stage of deformation and then, increased slowly. With the increase of deformation degree, hardness and tensile strength were rapidly increased with linear relations, while elongation was rapidly decreased and then slowly decreased. Hardness, tensile strengths and elongation were influenced strongly by deformation induced martensite.

Estimation of Surface Forces in Micro Rough Surface Contacts

  • Kim, Doo-In;Ahn, Hyo-Sok;Choi, Dong-Hoon
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.63-64
    • /
    • 2002
  • In a micro-scale contact, surface forces such as capillary force and van der Waals Interaction significantly Influence the contact between asperities of rough surfaces. Little is, however, known about the variation of these surface forces as a function of chemical property of the surface (hydrophilicity), relative humidity and deformation of asperities In the real area of contact. A better understanding of these surface forces is of great necessity in order to find an optimal solution for reducing friction and adhesion of micro surfaces. We proposed an effective method to analyze capillary and van der Waals forces In nano-scale contact. In this method, Winklerian foundation model was employed to analyze the contact of rough surfaces that were obtained from atomic force microscopy (AFM) height Images. Self-mated contact of diamond-like-carbon (DLC) coatings was analyzed, as an example, by the proposed model. It was shown that the capillary force was significantly influenced by relative humidify and wet angle of the DLC surface. The deformation of asperities to a critical magnitude by external loading led to a considerable increase of both capillary and van der Waals forces.

  • PDF

Die Life Estimation of Hot Forging for Surface Treatment and Lubricants

  • Dong-Hwan;Byung-Min;Chung-Kil
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.5-13
    • /
    • 2004
  • This study explains the effects of lubricant and surface treatment on the life of hot forging dies. The thermal load and thermal softening, that occur when there is contact between the hotter billet and the cooler dies in hot forging, cause wear, thermal cracking and fatigue, and plastic deformation. Because the cooling effect and low friction are essential to the long life of dies, the proper selection of lubricant and surface treatment is very important in hot forging process. The two main factors that decide friction and heat transfer conditions are lubricant and surface treatment, which are directly related to friction factor and surface heat transfer coefficient. Experiments were performed for obtaining the friction factors and the surface heat transfer coefficients in different lubricants and surface treatments. For lubrication, oil-base and water-base graphite lubricants were used, and ion-nitride and carbon-nitride were used as surface treatment conditions. The methods for estimating die service life that are suggested in this study were applied to a finisher die during the hot forging of an automobile part. The new techniques developed in this study for estimating die service life can be used to develop more feasible ways to improve die service life in the hot forging process.

Analysis of Surface Forces in Micro Contacts between Rough Surfaces (거친 표면간의 미세 접촉에서의 표면력 해석)

  • Kim, Doo-In;Ahn, Hyo-Sok;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2180-2186
    • /
    • 2002
  • In a micro-scale contact, capillary force and van der Waals interaction significantly influence the contact between asperities of rough surfaces. Little is, however, known about the variation of these surface forces as a function of chemical property of the surface (wet angle), relative humidity and deformation of asperities in the real area of contact. A better understanding of these surface forces is of great necessity in order to find a solution for reducing friction and adhesion of micro surfaces. The objective of this study is to investigate the surface forces in micro-scale rough surface contact. We proposed an effective method to analyze capillary and van der Waals forces in micro-scale contact. In this method, Winkler spring model was employed to analyze the contact of rough surfaces that were obtained from atomic force microscopy (AFM) height images. Self-mated contact of DLC(diamond like carbon) coatings was analyzed, as an example, by the proposed model. It was shown that the capillary force was significantly influenced by relative humidity and wet angle of the DLC surface. The deformation of asperities to a critical magnitude by external loading led to a considerable increase of both capillary and van der Waals forces.