• Title/Summary/Keyword: Surface defect. Optical measurement

Search Result 20, Processing Time 0.032 seconds

Gradient of the Residual Stress distribution in the Mechanical Defect on the Optical Fiber Surface (광섬유 표면의 기계적 손상에 대한 잔류응력 분포의 변화)

  • Sin, In-Hui;Kim, Deok-Yeong
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2005.07a
    • /
    • pp.206-207
    • /
    • 2005
  • The gradient of the residual stress distribution in the mechanical defect on the optical fiber surface was investigated. This gradient of the residual stress distribution appeared in both of the core and the clad of the mechanical defect region on the optical fiber. The residual stress measurement was suggested as a investigation method of the mechanical defect on the optical fiber.

  • PDF

A Study on Confocal Microscope for A Precise 3-Dimensional Surface Measurement (물체표면의 3차원 정밀형상측정을 위한 공초점 현미경에 관한 연구)

  • 송대호;안중근;강영준;채희창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.233-236
    • /
    • 1997
  • In modem industry, the accuracy and the surface-finish requirements for machined parts have been becoming ever more stringent. Optical method in measurements is playing an important role in vibration measurement, crack and defect detection and surface topography with the advent of opto-mechatronics. In this study, the principle of the general confocal microscope is introduced for surface measurement, and the advanced confocal microscope that has better measuring speed than the traditional confocal microscope is developed. A study on improving the resolution of the advanced confocal microscope is followed. Finally, Software for data acquisition and analysis of various parameters in surface geometrical features has been developed.

  • PDF

Development of Self-compensated Technique for Evaluation of Surface-breaking Crack by Using Laser Based Ultrasound

  • Choi, Sang-Woo;Lee, Joon-Hyun;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.3
    • /
    • pp.215-221
    • /
    • 2005
  • It is required to evaluate nondestructively depth of surface-breaking cracks in structures. In this paper, the self-compensated technique by laser-based ultrasound is used to measure the depth of surface-breaking defect. Optical generation of ultrasound produces a well defined pulse with reliable frequency content. It is broad banded and suitable for measurement of attenuation and scattering over a wide frequency range. The self-calibrated signal transmission data of surface wave shows good sensitivity as a practical tool far assessment of surface-breaking defect depth. It is suggested that the relationship between the signal transmission and crack depth can be used to predict the surface-breaking crack depths in structures.

Nondestructive Measurement on Electrical Characteristics of Amorphous Silicon by Using the Laser Beam (레이저 빔을 이용한 비정질실리콘 전기적 특성의 비파괴 측정)

  • 박남천
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.36-39
    • /
    • 2000
  • A small electrical potential difference which appears on any solid body when subjected to illumination by a modulated light beam generated by laser is called photocharge voltage(PCV)[1,2]. This voltage is proportional to the induced change in the surface electrical charge and is capacitatively measured on various materials such as conductors, semiconductors, ceramics, dielectrics and biological objects. The amplitude of the detected signal depends on the type of material under investigation, and on the surface properties of the sample. In photocharge voltage spectroscopy measurements[3], the sample is illuminated by both a steady state monochromatic bias light and the pulsed laser. The monochromatic light is used to created a variation in the steady state population of trap levels in the surface and space charge region of semiconductor samples which does result in a change in the measured voltage. Using this technique the spatial variation of PCV can be utilized to evaluate the surface conditions of the sample and the variation of the PCV due to the monochromatic bias light are utilized to characterize the surface states. A qualitative analysis of the proposed measurement is present along with experimental results performed on amorphous silicon samples. The deposition temperature was varied in order to obtain samples with different structural, optical and electronic properties and measurements are related to the defect density in amorphous thin film.

  • PDF

Measurement of Internal Defects of Pressure Vessels using Unwrapping images in Digital Shearography (Digital Shearography 에서 Unwrapping 이미지와 FEM 을 이용한 압력용기의 내부결함 측정)

  • Kim, Seong-Jong;Kang, Young-June;Sung, Yeon-Hak;Ahn, Yong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.48-55
    • /
    • 2012
  • Pressure vessels in vehicle industries, power plants, and chemical industries are often affected by flaw and defect generated inside the pressure vessels due to production processes or being used. It is very important to detect such internal defects of pressure vessel because they sometimes bring out serious problems. In this paper, an optical defect detection method using digital shearography is used. This method has advantages that the inspection can be performed at a real time measurement and is less sensitive to environmental noise. Shearography is a laser-based technique for full-field, non-contacting measurement of surface deformation (displacement or strain). The ultimate goal of this paper is to detect flaws in pressure vessels and to measure the lengths of the flaws by using unwrapping, phase images which are only obtained by Phase map. Through this method, we could decrease post-processing (next processing). Real length of a pixel can be calculated by comparing minimum and maximum unwrapping images with shearing angle. Through measuring several specimen defects which have different lengths and depths of defect, it can be possible to interpret quantitatively by calculating gray level.

New Measurement Method of Wound Healing by Stereoimage Optical Topometer System (Stereoimage Optical Topometer System을 이용한 새로운 창상 계측 방법)

  • Rho, Kyoung-Hwan;Han, Seung-Kyu;Kim, Woo-Kyung
    • Archives of Plastic Surgery
    • /
    • v.35 no.6
    • /
    • pp.755-758
    • /
    • 2008
  • Purpose: In order to determine the amount of wound healing, objective sequential assessments of changes in wound size and depth are essential. Although a variety of measurements for wound healing have been proposed, a gold standard for quantifying day-to-day changes in healing has not been established. We present here a simple and non-invasive wound measurement method that quantitatively and accurately documents changes of the size of a raw surface and the volume of a soft tissue defect using a stereoimage optical topometer(SOT) system. Methods: Using a 5mm diameter biopsy punch, four circular wounds were created on abdominal area of a diabetic mouse. Photographs were taken using SOT system at baseline, 5th day and 10th postoperative day. The wound margin was traced on a digitalized photo and evaluated the area and the volume of the wound by SOT system. Results: The SOT system calculated a mean wound surface of $15.93{\pm}0.29mm^2$ and volume of $827.50{\pm}88.86$ intensity/pixel${\times}$area(I/PA) immediately after wounding. On the 5th day after the operation wound surface declined by $10.73mm^2$ and on the 10th day declined by $5.95mm^2$. The wound volume also declined from 827.50 I/PA to 161.75 I/PA and 30.50 I/PA on 0, 5th and 10th day, respectively. Conclusion: The SOT system described in this study represents a reliable, simple, practical, and non-invasive technique to accurately monitor and evaluate wound healing.

Nondestructive Measurement on Electrical Characteristics of Amorphous Silicon by Using the Laser Beam (레이저 빔을 이용한 비정질실리콘 전기적 특성의 비파괴 측정)

  • 박남천
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.36-39
    • /
    • 2000
  • A small electrical potential difference which appears on any solid body when subjected to illumination by a modulated light beam generated by laser is called photocharge voltage(PCV)[1,2]. This voltage is proportional to the induced change in the surface electrical charge and is capacitatively measured on various materials such as conductors, semiconductors, ceramics, dielectrics and biological objects. The amplitude of the detected signal depends on the type of material under investigation, and on the surface properties of the sample. In photocharge voltage spectroscopy measurements[3], the sample is illuminated by both a steady state monochromatic bias light and the pulsed laser. The monochromatic light is used to created a variation in the steady state population of trap levels in the surface and space charge region of semiconductor samples which does result in a change in the measured voltage. Using this technique the spatial variation of PCV can be utilized to evalulate the surface conditions of the sample and the variation of the PCV due to the monochromatic bias light are utilized to charactrize the surface states. A qualitative analysis of the proposed measuremen is present along with experimental results performed on amorphous silicon samples. The deposition temperature was varied in order to obtain samples with different structural, optical and electronic properties and measurements are related to the defect density in amorphous thin film.

  • PDF

Optical Design and Construction of Narrow Band Eliminating Spatial Filter for On-line Defect Detection (온라인 결함계측용 협대역 제거형 공간필터의 최적설계 및 제작)

  • 전승환
    • Journal of the Korean Institute of Navigation
    • /
    • v.22 no.4
    • /
    • pp.59-67
    • /
    • 1998
  • A quick and automatic detection with no harm to the goods is very important task for improving quality control, process control and labour reduction. In real fields of industry, defect detection is mostly accomplished by skillful workers. A narrow band eliminating spatial filter having characteristics of removing the specified spatial frequency is developed by the author, and it is proved that the filter has an excellent ability for on-line and real time detection of surface defect. By the way,. this spatial filter shows a ripple phenominum in filtering characteristics. So, it is necessary to remove the ripple component for the improvement of filter gain, moreover efficiency of defect detection. The spatial filtering method has a remarkable feature which means that it is able to set up weighting function for its own sake, and which can to obtain the best signal relating to the purpose of the measurement. Hence, having an eye on such feature, theoretical analysis is carried out at first for optimal design of narrow band eliminating spatial filter, and secondly, on the basis of above results spatial filter is manufactured, and finally advanced effectiveness of spatial filter is evaluated experimentally.

  • PDF

A Study on 3-Dimensional Surface Measurement using Confocal Principle (공초점 원리를 이용한 3차원 표면형상 측정에 관한 연구)

  • Kang, Young-June;Song, Dae-Ho;You, Weon-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.169-176
    • /
    • 2001
  • In modern industry, the accuracy and the sulfate-finish requirements for machined parts have been becoming ever more stringent. In addition, the measurement and understanding of surface topography is rapidly attracting the attention of the physicist and chemist as well as the engineer. Optical measuring method is used in vibration measurement, crack and defect detection with the advent of opto-mechatronics, and it is expected to play an important role in surface topography. In this study, the principle of confocal microscope is described, and the advanced 3-D surface measuring system that has better performance than the traditional confocal microscope is developed. Suitable fixtures arc developed and integrated with the computer system for generating 3-D surface and form data. Software for data acquisition and analysis of various parameters in surface geometrical features has been developed.

  • PDF