• Title/Summary/Keyword: Surface curvature

Search Result 630, Processing Time 0.026 seconds

ROC Analysis of Topographic Factors in Flood Vulnerable Area considering Surface Runoff Characteristics (지표 유출 특성을 고려한 홍수취약지역 지형학적 인자의 ROC 분석)

  • Lee, Jae Yeong;Kim, Ji-Sung
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.327-335
    • /
    • 2020
  • The method of selecting an existing flood hazard area via a numerical model requires considerable time and effort. In this regard, this study proposes a method for selecting flood vulnerable areas through topographic analysis based on a surface runoff mechanism to reduce the time and effort required. Flood vulnerable areas based on runoff mechanisms refer to those areas that are advantageous in terms of the flow accumulation characteristics of rainfall-runoff water at the surface, and they generally include lowlands, mild slopes, and rivers. For the analysis, a digital topographic map of the target area (Seoul) was employed. In addition, in the topographic analysis, eight topographic factors were considered, namely, the elevation, slope, profile and plan curvature, topographic wetness index (TWI), stream power index, and the distances from rivers and manholes. Moreover, receiver operating characteristic analysis was conducted between the topographic factors and actual inundation trace data. The results revealed that four topographic factors, namely, elevation, slope, TWI, and distance from manholes, explained the flooded area well. Thus, when a flood vulnerable area is selected, the prioritization method for various factors as proposed in this study can simplify the topographical analytical factors that contribute to flooding.

Surface-error Measurement for a Convex Aspheric Mirror Using a Double-stitching Method (이중 정합법을 이용한 볼록비구면 반사경의 형상 오차 측정)

  • Kim, Goeun;Lee, Yun-Woo;Yang, Ho-Soon
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.6
    • /
    • pp.314-322
    • /
    • 2021
  • A reflecting telescope consists of a concave primary mirror and a convex secondary mirror. The primary mirror is easy to measure, because it converges the beam from an interferometer, while the secondary mirror diverges the beam and so is not easy to measure, even though it is smaller than the primary mirror. In addition, the Korsch-type telescope uses the central area of the secondary mirror, so that the entire area of the secondary mirror needs to be measured, which the classical Hindle test cannot do. In this paper, we propose a double-stitching method that combines two separate area measurements: the annular area, measured using the Hindle stitching method, and the central area, measured using a spherical wave from the interferometer. We test the surface error of a convex asphere that is 202 mm in diameter, with 499 mm for its radius of curvature and -4.613 for its conic constant. The surface error is calculated to be 19.5±1.3 nm rms, which is only 0.7 nm rms different from the commercial stitching interferometer, ASI. Also, the two results show a similar 45° astigmatism aberration. Therefore, our proposed method is found to be valuable for testing the whole area of a convex asphere.

Electrical and Optical Properties According to Detachment and Bending of Carbon Nanotube-coated Transparent Tape (카본나노튜브 코팅된 투명 테이프의 탈착과 벤딩에 따른 전기 및 광학적인 특성)

  • Kyoung-Bo Kim;Jongpil Lee;Moojin Kim
    • Journal of Industrial Convergence
    • /
    • v.21 no.8
    • /
    • pp.35-42
    • /
    • 2023
  • Recently, electronic devices with bendable electronic devices based on flexible substrates are being sold, and therefore, the purpose of this study is to evaluate the possibility of flexible substrates of conductive transparent tapes. As a transparent electrode, carbon nanotube (CNT) was formed by the coating method developed by the research team, and samples coated up to 5 times were fabricated. The surface resistance and transmittance of the substrate were measured, and both resistance and transmittance decreased as the number of CNT coatings increased. After the tape was detached from the glass, the surface resistance slightly increased in all samples, and the transmittance increased by about 10% in all measured wavelength ranges because the glass was removed. Next, the tape coated with CNT twice was used to a bending test 20,000 times under the condition of a radius of curvature of 2 mm. The electrical and optical properties before and after bending did not change, which means that there was no change in CNT properties due to bending.

Skin Damage Sustained During Head-and-Neck and Shoulder Radiotherapy Due to the Curvature of Skin and the Use of Immobilization Mask (머리-목 그리고 어깨의 방사선 치료 시 피부곡면과 고정장치로 인한 피부손상연구)

  • Kim, Soo-Kil;Jeung, Tae-Sig;Lim, Sang-Wook;Park, Yeong-Mouk;Park, Dahl
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.86-92
    • /
    • 2010
  • The purpose of this study was to measure curvature contour skin dose using radiochromic film and TLD for a conventional open field. We also attempted to quantify the degradation of skin sparing associated with use of immobilization devices for high energy photon beams and to calculate the skin dose with a help of Monte Carlo (MC) simulation. To simulate head-and-neck and shoulder treatment, a cylindrical solid water phantom 11 cm in diameter was irradiated with 6 MV x-rays using $40{\times}40\;cm^2$ field at 100 cm source axis distance (SAD) to the center of the phantom. Aquaplastic mesh mask was placed on the surface of the cylindrical phantom that mimicked relevant clinical situations. The skin dose profile was obtained by taking measurements from $0^{\circ}$ to $360^{\circ}$ around the circumference of the cylindrical phantom. The skin doses obtained from radiochromic film were found to be 47% of the maximum dose of $D_{max}$ at the $0^{\circ}$ beam entry position and 61% at the $90^{\circ}$ oblique beam position without the mask. Using the mask (1.5 mm), the skin dose received was 59% at $0^{\circ}$ incidence and 78% at $80^{\circ}$ incidence. Skin dose results were also gathered using thin thermoluminescent dosimeters (TLD). With the mask, the skin dose was 66% at $0^{\circ}$ incidence and 80% at $80^{\circ}$ incidence. This method with the mask revealed the similar pattern as film measurement. For the treatments of the head-and-neck and shoulder regions in which immobilization mask was used, skin doses at around tangential angle were nearly the same as the prescription dose. When a sloping skin contour is encountered, skin doses may be abated using thinner and more perforated immoblization devices which should still maintain immoblization.

Superficial Dosimetry for Helical Tomotherapy (토모테라피를 이용한 표면 치료 계획과 선량 분석)

  • Kim, Song-Yih;You, Sei-Hwan;Song, Tae-Soo;Kim, Yong-Nam;Keum, Ki-Chang;Cho, Jae-Ho;Lee, Chang-Geol;Seong, Jin-Sil
    • Radiation Oncology Journal
    • /
    • v.27 no.2
    • /
    • pp.103-110
    • /
    • 2009
  • Purpose: To investigate the feasibility of helical tomotherapy on a wide curved area of the skin, and its accuracy in calculating the absorbed dose in the superficial region. Materials and Methods: Two types of treatment plans were made with the cylinder-shaped 'cheese phantom'. In the first trial, 2 Gy was prescribed to a 1-cm depth from the surface. For the other trial, 2 Gy was prescribed to a 1-cm depth from the external side of the surface by 5 mm. The inner part of the phantom was completely blocked. To measure the surface dose and the depth dose profile, an EDR2 film was inserted into the phantom, while 6 TLD chips were attached to the surface. Results: The film indicated that the surface dose of the former case was 118.7 cGy and the latter case was 130.9 cGy. The TLD chips indicated that the surface dose was higher than these, but it was due to the finite thickness of the TLD chips. In the former case, 95% of the prescribed dose was obtained at a 2.1 mm depth, while the prescribed does was at 2.2 mm in the latter case. The maximum dose was about 110% of the prescribed dose. As the depth became deeper, the dose decreased rapidly. Accordingly, at a 2-cm depth, the dose was 20 % of the prescribed dose. Conclusion: Helical tomotherapy could be a useful application in the treatment of a wide area of the skin with curvature. However, for depths up to 2 mm, the planning system overestimated the superficial dose. For shallower targets, the use of a compensator such as a bolus is required.

Soft Magnetic Property Analysis of Nanocrystalline Fe-Al-O Film with the Change of Microstructure (나노 결정립 Fe-Al-O 산화막의 미세구조 변화에 따른 연자기적 특성 분석)

  • Lee, Young-Woo;Park, Bum-Chan;Kim, Chong-Oh;Moon, Ji-Hyun;Choi, Yong-Dae
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.2
    • /
    • pp.59-64
    • /
    • 2004
  • We investigated the soft magnetic properties of nanocrystalline Fe-Al-O film as etching the oxide film with ion beam etching method. It is thought that the grain size of Fe-Al-O film increases as the thickness decreases. The coercivity and squareness increase with decreasing thickness. The surface curvature of Am images increases when the etching experiment proceeds. This phenomena could be due to the grain growth which occurs during sputtering. This grain growth could be assisted by the the plasma energy during sputtering. Therefore proper thickness should be searched to acquire the good soft magnetic properties for the nanocrystalline film material. Good soft magnetic properties of Fe-Al-O film was acquired at the thickness of more than 900 nm.

Comparison of the centering ability of Wave.One and Reciproc nickel-titanium instruments in simulated curved canals

  • Lim, Young-Jun;Park, Su-Jung;Kim, Hyeon-Cheol;Min, Kyung-San
    • Restorative Dentistry and Endodontics
    • /
    • v.38 no.1
    • /
    • pp.21-25
    • /
    • 2013
  • Objectives: The aim of this study was to evaluate the shaping ability of newly marketed single-file instruments, Wave One (Dentsply-Maillefer) and Reciproc (VDW GmbH), in terms of maintaining the original root canal configuration and curvature, with or without a glide-path. Materials and Methods: According to the instruments used, the blocks were divided into 4 groups (n = 10): Group 1, no glide-path / Wave One; Group 2, no glide-path / Reciproc; Group 3, #15 K-file / Wave One; Group 4, #15 K-file / Reciproc. Pre- and post-instrumented images were scanned and the canal deviation was assessed. The cyclic fatigue stress was loaded to examine the cross-sectional shape of the fractured surface. The broken fragments were evaluated under the scanning electron microscope (SEM) for topographic features of the cross-section. Statistically analysis of the data was performed using one-way analysis of variance followed by Tukey's test (${\alpha}$ = 0.05). Results: The ability of instruments to remain centered in prepared canals at 1 and 2 mm levels was significantly lower in Group 1 (p < 0.05). The centering ratio at 3, 5, and 7 mm level were not significantly different. Conclusions: The Wave One file should be used following establishment of a glide-path larger than #15.

Relationship Between Flat End-mill Shape and Geometrical Characteristics in Side Walls Generated by End-milling Process (엔드밀링 공정에 의하여 생성된 측벽의 기하학적 특성과 평엔드밀 형상 사이의 관계)

  • Kim, Kang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.95-103
    • /
    • 2015
  • This paper presents the effects of the tool shape on the geometrical characteristics of flat end-milled side walls. A tool shape is characterized by such parameters as helix angle, number of cutting edges, and diameter. The geometrical characteristics of the side walls are represented by the surface profiles in the feed and axial directions, which are orthogonal to each other. The geometrical defects in each direction are estimated based on the instantaneous apparent cutting areas, which are represented by the interference area between the tool and workpiece and that between the cutting edge and workpiece. It is confirmed that a geometrical defect in the feed direction is formed when the tool leaves the workpiece and the curvature of the tool path changes. Defects in the axial direction are also found in the side walls, except for the defect zone in the feed direction. An up-cut using an end-mill with a steeper helix angle, a greater number of cutting edges, and a smaller diameter are thus found to improve the geometrical accuracy of end-milled side walls.

Influence of Turning Region and Channel Rotation on Pressure Drop in a Square Channel with Transverse Ribs (90° 요철이 설치된 정사각 덕트 내 압력강하에 곡관부 및 회전이 미치는 영향)

  • Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.126-135
    • /
    • 2006
  • The pressure drop characteristics in a rotating two-pass duct with rib turbulators are investigated in the present study. The square duct has a hydraulic diameter $(D_h)$ of 26.7 mm, and $1.5mm{\times}1.5mm$ square $90^{\circ}-rib$ turbulators are attached on the leading and trailing walls. The pitch-to-rib height ratio (p/e) is 10. The distance between the tip of the divider and the outer wall of the duct is $1.0D_h$ and the width of divider wall is 6.0mm or $0.225D_h$. The Reynolds number (Re) based on the hydraulic diameter is kept constant at 10,000 to exclude the Reynolds effect, and the rotation number (Ro) is varied from 0.0 to 0.20. The pressure drop distribution, the friction factor and thermal performance are presented for the leading, trailing and the outer surfaces. It is found that the curvature of the $180^{\circ}$-turn produces Dean vortices that cause high pressure drop in the turn. The channel rotation results in pressure drop discrepancy between leading and trailing surfaces so that non-dimensional pressure drops are higher on the trailing surface in the first-pass and on the leading and side surfaces in the second-pass. In the turning region, Dean vortices shown in the stationary case transform into one large asymmetric vortex cell, and subsequent pressure drop characteristics also change. As the rotation number increases, the pressure drop discrepancy enlarges.

Freezing and Deflection Characteristics of Flexible Pavement Structure Using Frost Model Test (동상모형실험을 통한 아스팔트 포장체의 동결 및 처짐 특성)

  • Shin, Eun-Chul;Hwang, Soon-Gab;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.3
    • /
    • pp.27-35
    • /
    • 2012
  • In this paper, the frost heaving and thawing characteristics of flexible pavement structure were evaluated in the large scale freezer which have a specification of temperature range $-20^{\circ}C{\sim}10^{\circ}C$ and $3.2m(L){\times}3.2m(B){\times}2.4m(H)$ in size. The insulated steel box with the size of $0.9m(L){\times}0.9m(B){\times}0.9m(H)$ was used to simulate actual pavement road structure. The variation of temperature, frost heave amount and frost heave pressure were measured through the instrument of TDS-602 data logger. LFWD (light falling weight deflectometer) was used to determine the change of deflection due to the frost heaving and thawing. Furthermore, the influence of aggregate layer to the freezing of the subgrade soil was studied to verify the function and effectiveness of the anti-freezing layer.