• Title/Summary/Keyword: Surface contents of enamel

Search Result 21, Processing Time 0.019 seconds

Surface change of enamel according to application time of 35% Carbamide Peroxide (35% Carbamide Peroxide gel의 적용시간에 따른 법랑질 변화)

  • Lee, Hye-Jin;Kim, Min-Young;Han, Myeong-Suk
    • Journal of Korean society of Dental Hygiene
    • /
    • v.8 no.4
    • /
    • pp.11-18
    • /
    • 2008
  • The purposes of this study were to examine the effect of 35% Carbamide Peroxide(CP) bleaching agent on the changes in physical and chemical characteristics of tooth. The effect of bleaching agent on enamel was analyzed using Hardness test, SEM and EDS. The microhardness between bleached groups after bleaching showed statistically significant difference according to the paired t-test. The bleached enamel surface showed apparent morphological changes compared to the enamel, which was stored in distilled water only. The difference of the total mineral contents for the distilled water and Carbamide Peroxide did not show statistical significance. These results demonstrated that bleaching using 35% Carbamide Peroxide were adversely affects application time of experimental group and may the safety of using these agents for a short time in dentist-monitored bleaching.

  • PDF

Effect of remineralization and inhibition to demineralization after fluoride gel or hydroxyapatite paste application on stripped enamel (치간 삭제 후 불소 또는 수산화인회석 도포 시 재광화 및 탈회억제에 관한 연구)

  • Hong, Hyun-Sil;Kim, Ho-Young;Sung, Ji-Young;Cho, Jin-Hyoung;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.40 no.4
    • /
    • pp.212-226
    • /
    • 2010
  • Objective: The aim of this study was to evaluate the effect of remineralization and inhibition to demineralization after fluoride gel (acidulated phosphate fluoride, APF) or hydroxyapatite (HAp) paste application on interdentally stripped teeth. Methods: After interdental stripping, 1.23% APF or 5%, 10% HAp paste were applied for 7 days for remineralization. Afterwards, teeth were exposed to lactate carbopol buffer solution for demineralization. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were used to compare change in surface contents and crystal structures after remineralization, and then after demineralization. Results: EDS analysis indicated that calcium (p < 0.001) and phosphate (p < 0.01) contents were increased after 10% HAp paste application on stripped enamel, calcium (p < 0.05) and phosphate (p < 0.01) contents were increased after 5% HAp paste application, and fluoride (p < 0.01) contents were increased after 1.23% APF application. SEM image showed that enamel surfaces became smoother and crystal structures became small and compact after APF or HAp application. After demineralization, calcium (p < 0.05) and phosphate (p < 0.05) contents remained increased on the enamel remineralized with 10% HAp paste, and phosphate (p < 0.05) contents remained increased on the enamel remineralized with 5% HAp paste. After demineralization, surfaces looked less destroyed in the enamel remineralized beforehand than those of the control, and small pores between crystal structures, formed by remineralization were remained. Conclusions: Hydroxyapatite paste and fluoride gel were helpful to remineralize and inhibit deminerlization on stripped enamel.

Changes in surface content and crystal structure after fluoride gel or hydroxyapatite paste application on stripped enamel (치간 삭제 후 불소 및 수산화인회석 도포 시 법랑질 표면의 함량 및 결정구조 변화에 관한 연구)

  • Kim, Sang-Cheol;Hong, Hyun-Sil;Hwang, Young-Cheol
    • The korean journal of orthodontics
    • /
    • v.38 no.6
    • /
    • pp.407-415
    • /
    • 2008
  • Objective: The aim of this study was to evaluate the remineralization of interdentally stripped teeth after fluoride gel or hydroxyapatite paste application. Methods: After interdental stripping, 1.23% fluoride gel or 10% hydroxyapatite paste was applied three times a day, with a duration of four minutes, for a week. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were used to compare the change of surface contents and crystal structures before and after the application of fluoride gel or hydroxyapatite paste. Results: EDS analysis indicated that calcium contents were increased after 10% HAp paste application on stripped enamel (p < 0.01). SEM view showed that enamel surfaces in groups of 1.23% APF gel or 10% HAp paste application were smoother than those of control group, which was regarded as filling of the pore structure. And pores between crystal structures in groups treated with 1.23%, APF gel or 10% HAp paste were smaller than those of control group. Conclusions: Application of APF or HAp on stripped enamel could positively influence on the surface contents or crystal structure.

Comparison of Anticariogenic Effect after Applying Fluoride Varnish on Sound and Artificial Caries Enamel (정상법랑질과 인공우식법랑질에 불소바니쉬 도포 후 항우식 효과 비교)

  • Jeong, Moon-Jin;Lim, Ji-Hyang;Min, Ji-Hye;Jeong, Soon-Jeong;Son, Jung-Hui;Lim, Do-Seon
    • Journal of dental hygiene science
    • /
    • v.13 no.4
    • /
    • pp.461-470
    • /
    • 2013
  • In order to examine the anticariogenic effect after fluoride varnish was applied to sound enamel and artificial caries enamel, anterior teeth of healthy cattle were used and divided into four groups such as group 1 (sound enamel), group 2 (application of fluoride varnish to sound enamel), group 3 (artificial caries enamel) and group 4 (application of fluoride varnish to artificial caries enamel). Remineralization on the surface of enamel and changes of crystalline structure after demineralization were observed by using a field emission scanning electron microscope (FE-SEM). Quantitative analysis of Ca and P was measured by using the energy dispersive X-ray spectrophotometer (EDS). The following conclusions were obtained: 1)Surface pattern of enamel was the roughest in group 3 due to the defects caused by porosity and microcracks. Group 4, group 1 and group 2 were followed in order; 2) It was found that pattern of crystalline structures in a group of application of fluoride varnish and a group of no application showed bigger change in artificial caries enamel than that in sound enamel. In other words, groups 4 and 1 showed a similar pattern; 3) The contents of Ca and P were higher in groups of application of fluoride varnish (group 2 and group 4) than in groups of no application of fluoride varnish (group 1 and group 3). Taken results of this study together, in the case of application of fluoride varnish, crystalline structure was changed by remineralization even in the sound enamel. In particular, porous structures showed a smooth and uniform pattern due to the recalcification in the artificial caries enamel. In addition, according to results of EDS analysis, the contents of Ca and P were increased and it had great anticariogenic effects which inhibit decalcification of sound enamel and artificial caries enamel.

Influence of Microhardness and Mineral Content on Fluoride Materials Containing Low Concentration with Sodium Fluoride (저농도의 불화나트륨을 함유한 불소제제가 치질의 강도와 화학적 성분에 미치는 영향)

  • Kim, Hye-Young;Nam, Seoul-Hee;Jeong, Mi-Ae
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.4
    • /
    • pp.312-319
    • /
    • 2013
  • The purpose of this study was to evaluate the efficacy of gargle and toothpaste containing low concentration with sodium fluoride on the remineralization through the surface microhardness and mineral content in enamel. After 4 weeks-application, the enamel surface was measured using microhardness tester and the calcium (Ca) and phosphorous (P) concentration of mineral content by electron probe microanalyzer (EPMA) analysis. By combining fluoridated gargle with toothpaste, a remineralized enamel resulted in significantly significant differences among the four groups (p<0.05). The Ca change treated with 0.23% fluoridated toothpaste and 0.02% fluoridated gargle with 0.23% toothpaste demonstrated the highest among the other groups. In conclusion. the fluoridated gargle with toothpaste by low concentration showed a significantly greatest synergistic effect on remineralization of the enamel than the other groups.

SHEAR BOND STRENGTH OF ORTHODONTIC BONDING RESINS TO PORCELAIN; AN IN VITRO STUDY (도재에 대한 교정용 브라켓 접착 레진의 전단접착강도에 관한 연구)

  • Ko, Jin-Hwan;Lee, Ki-Soo
    • The korean journal of orthodontics
    • /
    • v.22 no.1
    • /
    • pp.43-65
    • /
    • 1992
  • Bonding orthodontic adhesive resins to glazed porcelain surface is not attainable. The aim of this investigation was to examine, in vitro, the effect of three methods of porcelain surface pretreatment on the shear bond strength of orthodontic adhesives, and to compare the shear strength of orthodontic bracket bonding to porcelain surface by the best results that to human enamel. Porcelain disks ($Ceramco^{(TM)}$ and $Vita^{(TM)}$) baked in the laboratory were roughened by sandpapers, #320, #600, #800, #1000 and #1200, and were pretreated with silane and dried at the various temperatures, room temperature, $50^{\circ}C$, $70^{\circ}C$ and $90^{\circ}C$, and were etched by 3% hydrofluoric acid solution for 1, 3, 5, 7, and 9 minutes, orthodontic adhesives (System $1+^{(TM)}$ and $Unite^{(TM)}$) were applied on them, and shear bond strengths were measured by Instron. The best results of pretreatment of each method were determined by the shear bond strengths. Again, porcelain disks were pretreated by the determined best results and human enamel were etched by 37% hydrofluoric acid solution, orthodontic brackets were bonded on them by the orthodontic adhesives, and the shear bond strengths were measured and compared between them. 1. Roughening porcelain surfaces with coarse sandpaper (#300) showed higher shear bond strength than that with finer sandpapers, but it $(22.44Kgf/cm^2)$ was distinguishably low compared to that from etched human enamel $(144.11Kgf/cm^2)$. 2. There were disparities in shear bond strengths upon the orthodontic resins, which was presumably related to the contents of fillers in orthodontic adhesive resins. Also there were disparities in shear bond strength upon the porcelains which had different composition. 3. Silane enhanced the shear bond strength of orthodontic resins to porcelain surfaces ($25.20Kgf/cm^2$ at $50^{\circ}C$), which was markedly low compared to that from etched human enamel. 4. Etched porcelain surface with 3% hydrofluoric acid solution for 1 to 9 minutes showed no difference in shear bonding strength of orthodontic adhesive resins. Shear bond strength from etched porcelain $(97.43-120.72Kgf/cm^2)$ were as high as clinically available, but low compared to that from etched human enamel. 5. Roughening with #300 sandpaper and etching by 3% hydrofluoric acid followed silane application on porcelain surface showed lower shear bond strength than etched human enamel, but were as high as clinically useful. 6. The results suggest that etching porcelain surface by 3% hydrofluoric acid solution might provide comparatively high shear bond strength as much as clinically favorable.

  • PDF

Effect of 35% Hydrogen Peroxide with Dicalcium Phosphate Dihydrate on the Tooth Whitening and Microhardness (35% 과산화수소에 제2인산칼슘를 함유한 치아미백제가 치아의 색과 경도에 미치는 영향)

  • Jeoung, Mi-Ae;Oh, Hye-Seung;Shim, Youn-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.11
    • /
    • pp.235-242
    • /
    • 2010
  • The purpose of this study was to evaluate tooth whitening and microhardness after treatments with tooth bleaching agents containing dicalcium phosphate dihydrate (DCPD) and 35% hydrogen peroxide (HP) which were used in-office bleaching. Thirty enamel specimens were obtained from human premolars and randomly divided into 3 groups(n=10). Tooth bleaching agents were prepared with DCPD (0 g for controls, 0.1 g and 1 g for experimental groups) and HP solution (35% HP). All groups were applied to enamel surfaces for 60 min for 1 day. The pH of each tooth bleaching agent was measured. Tooth color, microhardness of enamel surfaces were also measured. The tooth bleaching agents containing DCPD showed a significant increase in pH compared to the ones without DCPD(p<0.05). Paired t-tests showed significant difference in color values of enamel before and after bleaching in all the groups(p<0.05). As a result, changes in color, containing DCPD group does not contain a statistically significant difference between groups was observed.(p>0.05). In all groups, tooth hardness after bleaching showed a significant decrease in microhardness (p<0.05). However, the DCPD concentration increased in the bleaching, microhardness values slightly decreased. Based on the above results, tooth bleaching agents containing DCPD and 35%HP were equally effective. Due to increases in pH and effective reduction of tooth surface decalcification, the surface characteristics are exposed to a reduced degree of negative effects, resulting in fewer constituent enamel alterations. Thus, commercial availability of the constituents of tooth whitening materials can be achieved.

Effects of Titratable Acidity and Organic Acids on Enamel Erosion In Vitro

  • Kim, Eun-Jeong;Jin, Bo-Hyoung
    • Journal of dental hygiene science
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Background: Erosion is a gradual process that occurs fairly quickly, and the full extent of the erosive effects of acidic beverages is not yet clear. The present study aimed to determine the differences in the erosive potentials among four naturally acidic fruit nectars within the same range of titratable acidity and to determine the influence of the components of organic acids on tooth erosion. Methods: Diluted fruit nectars (mandarin 1:1.1, orange 1:1.7, lemon 1:15, grapefruit 1:20) with the same range of titratable acidity (7.9 ml) and their corresponding organic acids (0.05%, 0.1%, 0.3%, and 0.5% citric acid, malic acid, and a citric and malic acid mixture [pH 2.8], respectively) were used. Specimens were placed in conical tubes with 50 ml of each of the test solutions for 1 hour. A microhardness test and scanning electron microscopy were used to measure enamel erosion. Acid separation was carried out using high-performance liquid chromatography to analyze the composition of each test solution. Results: Similar decreases in the Vickers hardness number (VHN) were observed among the groups treated with the following diluted fruit nectars: diluted mandarin nectar ($75.9{\Delta}VHN$), diluted lemon nectar ($89.1{\Delta}VHN$), diluted grapefruit nectar ($91.7{\Delta}VHN$), and diluted orange nectar ($92.5{\Delta}VHN$). No statistically significant differences were found in the enamel surface hardness after erosion (p>0.05). Citric and malic acids were the major organic acids in the test fruits. The lemon and orange groups had the highest malic acid concentrations, and the mandarin group had the lowest malic acid concentration. Conclusion: The titratable acidity and the citric and malic acid contents of the fruits could be crucial factors responsible for enamel erosion. Therefore, fruit-based drinks should be regarded as potentially erosive.

Comparative Tooth Morphology and Qualitative Analysis on the Enamel Surface using Energy Dispersive X-ray Spectroscopy in the White-Toothed Shrew Crocidura lasiura and C. suaveolens and the Red-Toothed Shrew Sorex caecutiens from Korea (한국 땃쥐속 우수리땃쥐 Crocidura lasiura와 작은땃쥐 C. suaveolens, 뒤쥐속 뒤쥐 Sorex caecutiens의 치아형태와 Energy Dispersive X-ray Spectroscopy를 이용한 법랑질 표면의 정성적 분석 비교)

  • Jeong, Soon-Jeong
    • Journal of dental hygiene science
    • /
    • v.13 no.2
    • /
    • pp.203-212
    • /
    • 2013
  • The tooth morphology and qualitative mineral contents on enamel surface using energy dispersive X-ray spectroscopy, (EDX) were examined in the white-toothed shrew (genus Crocidura ) Crocidura lasiura and C. suaveolens and the red-toothed shrew (genus Sorex) Sorex caecutiens. In the case of C. lasiura and C. suaveolens, dental formula was found I 3/1 C1/1 P1/1 M3/3=28. The upper 1st and 2nd molars had an unequal W-shape formed by 5 cusps on the crown. The 3rd molar was found one-third the size of those of 1st and 2nd molars. The upper 1st incisor had two different sized hook-shapes and the lower 1st incisor was even. In the case of S. caecutiens, dental formula was found to be I3/1 C1/1 P3/1 M3/3=32. The upper 1st and 2nd molars had an equal W-shape on crown. The upper 3rd molar was half the size of those of the other molars. The upper 1st incisor possessed two similar sized hook-shapes and the lower 1st incisor had an uneven and serrated form. A comparison with the dental and cranial measurements revealed C. lasiura to be the largest of the three species (p<0.001) and C. suaveolens and S. caecutiens were similar in size (p>0.05). A qualitative analysis of mineral contents on enamel surface of the lower 1st incisor and lower 1st molar using EDX revealed C, O, P, Ca and Cu in all specimens and Pb was detected in several enamel specimens. No significant differences in the mineral contents (% weight) were observed among the three species (p>0.05). Fe was only detected on enamel surface of S. caecutiens with red pigmented teeth. Therefore, Fe is responsible for the red tip of the teeth. These results suggest that tooth morphological characteristics including the color of the tooth tip might be used as the key classifying species belonging to Crocidura and Sorex.