• Title/Summary/Keyword: Surface conductivity

Search Result 1,541, Processing Time 0.028 seconds

Evaluation on Compressive Strength Development and Thermal Conductivity of Cement Pastes Containing Aerogels with Hydrophilic Surface Treatment (친수성 표면개질의 에어로겔을 혼입한 시멘트 페이스트의 압축강도 발현 및 열전도율 평가)

  • Ahn, Tae-Ho;Park, Jong-Beom;Yoon, Hyun-Sub;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.1
    • /
    • pp.51-57
    • /
    • 2018
  • The objective of the present study is to examine the feasibility on the development of high-insulation concrete using aerogels with hydrophilic surface treatment. To prevent the segregation and enhance the dispersibility of agerogels in the cement pastes, the substrate of aerogels was modified to be hydrophobic property using surfactant. The modified aerogels were added from 0% to 100% of the cement volume at the interval of 25% under the constant cement content. Some cement pastes showed segregation phenomenon and flocculation of aerogels during mixing phase. The addition of aerogels decreased the compressive strength of cement pastes but enhanced the thermal conductivity. The thermal conductivity of pastes with 100% aerogels was lower by 43% when compared with that measured in the conventional paste. To improve the compressive strength and insulation capacity of concrete containing aerogels, a reliable surface treatment method of aerogels needs to be further investigated.

Saturated Hydraulic Conductivity of Surface Seals Estimated from Computed Tomography-Measured Porosity (고해상도 X-ray CT 를 이용한 토양표면 피막의 공극율 및 포화수리전도도 측정)

  • Lee, Sang-Soo;Gantzer, C.J.;Thompson, A.L.;Anderson, S.H.;Ketchum, R.A.;Ok, Yong-Sik
    • 한국환경농학회:학술대회논문집
    • /
    • 2011.07a
    • /
    • pp.207-222
    • /
    • 2011
  • Relationships between soil saturated hydraulic conductivity ($K_s$) and porosity (${\phi}$) have been developed over many years; however, use of these relationships for evaluating rain-induced seals is limited mainly because of difficulties in estimating seal pore-size characteristics. The objectives of this study were to evaluate the $K_s$ of soil surface seals over a range of thicknesses, where seal thickness was determined using a High-Resolution-Computed-Tomography (HRCT) scanner, and to investigate relationships between $K_s$ and ${\phi}$ of developing seals in samples with equivalent diameters (e.d.) ${\geq}15\;{\mu}m$. A Mexico silt loam soil was packed to a bulk density (${\rho}_b$) of $1.1\;Mg\;m^{-3}$ in cylinders 160-mm i.d. by 160-mm long and subjected to $61-mm\;h^{-1}$ simulated rainfall having a kinetic energy (KE) of $25\;J\;m^{-2}\;min^{-1}$ for 7.5, 15, 30, and 60 min to create a range in seal development. Thicknesses of the seal layers were determined by analysis of HRCT images of seals. The $K_s$ values of the seals were estimated using an effective $K_s$ value ($K_{s-eff}$). The $K_s-{\phi}$ relationship was described by a Kozeny and Carmen equation, $K_s=B{\phi}^n$; where B and n are empirical constants and n = 31. This approach explained 86% of the variation between $K_s$ and ${\phi}$ within the soil seals. Knowledge of surface seal information and hydraulic conductivity can provide useful information to use in management of sites prone to sealing formation.

  • PDF

Observation of Surface Morphology and Electrical Properties of Polyurethane Polymer LB Films (폴리우레탄 고분자 LB막의 표면구조 관찰 및 전기적 특성)

  • Seo, Jeong-Yeul;Shin, Hoon-Kyu;Kwon, Young-Soo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.8
    • /
    • pp.371-375
    • /
    • 2001
  • We attempted to fabricate polyurethane derivatives (PU-CN, PU-DCM) LB films by using LB method. Also, we investigated the monolayer behavior at the air-water interface by surface pressure-area (${\pi}$-A) isotherms. The surface morphologies and the physicochemical properties of LB films were investigated by atomic force microscopy(AFM) and UV-vis spectroscopy, respectively. And, the electrical properties of polyurethane derivatives LB films were investigated by using the conductivity and the dielectric constant. In the surface morphologies, physicochemical and electrical properties of polyurethane derivatives LB films, the properties is different as to the polyurethane derivatives, it is considered that this phenomena could be described by the difference of lumophore pendant which was adhered at PU main chain.

  • PDF

Surface Conductance Modulation of Single-Walled Carbon Nanotubes and Effects on Dielectrophoresis (단일벽 탄소나노튜브의 표면 전도도 조절 및 유전영동에 대한 영향)

  • Hong Seung-hyun;Jung Se-hun;Kim Young-jin;Choi Jae-bong;Baik Seunghyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.179-186
    • /
    • 2006
  • Dielectrophoresis has received considerable attention for separating nanotubes according to electronic types. Here we examine the effects of surface conductivity of semiconducting single-walled carbon nanotubes (SWNT), induced by ionic surfactants, on the sign of dielectrophoretic force. The crossover frequency of semiconducting SWNT increases rapidly as the conductivity ratio between the particle and medium increases, leading to an incomplete separation of ionic surfactant suspended SWNT at an electric field frequency of 10 MHz. The surface charge of SWNT is neutralized by an equimolar mixture of anionic surfactant sodium dodecyl sulfate (SDS) and cationic surfactant cetyltrimenthylammonium bromide (CTAB), resulting in negative dielectrophoresis of semiconducting species at 10 MHz. A comparative Raman spectroscopy study shows a nearly complete separation of metallic SWNT.

Modeling Effective Rainfall for Upland Crops (밭에서의 유효우량 산정모형 개발)

  • 정하우;김성준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.1
    • /
    • pp.29-39
    • /
    • 1993
  • A model for estimating daily effective rainfall of upland crops was developed. The infiltration process was described by Green-Ampt infiltration model developed by Chu(1978). The model considers delayed surface ponding and surface detention storage under a uniform soil profile. The Green-Ampt parameters, that is, average hydraulic conductivity and average capillary pressure head on a sandy loam soil were determined from field experiment using Air-entry permeameter developed by Bouwer(1966). The model was verified by comparing measured and simulated surface runoff. The ratios of effective rainfall to total rainfall for red pepper, soybean, sesame and Chinese cabbage were evaluated using Borg's root growth model( 1986) respectively. The followings are a summary of this study results; 1.In a sandy loam soil average hydraulic conductivity was 3.28cm/hr and average capillary pressure head was 3.00cm. 2.The root growth of upland crops could be expressed by Borg's root growth model successively. 3.The measured and simulated surface runoff was agreed well with each other. 4.As the rainfall amount was increased, the ratio of effective rainfall to total rainfall was decreased exponentially till a certain growing period.

  • PDF

Characterization and influence of shear flow on the surface resistivity and mixing condition on the dispersion quality of multi-walled carbon nanotube/polycarbonate nanocomposites

  • Lee, Young Sil;Yoon, Kwan Han
    • Carbon letters
    • /
    • v.16 no.2
    • /
    • pp.86-92
    • /
    • 2015
  • Multi-walled carbon nanotube (MWCNT)/polycarbonate (PC) nanocomposite was prepared by direct melt mixing to investigate the effect of the shear rate on the surface resistivity of the nanocomposites. In this study, an experiment was carried out to observe the shear induced orientation of the MWCNT in the polymer matrix using a very simple melt flow indexer with various loads. The compression-molded, should be eliminated. MWCNT/PC nanocomposite sample exhibited lower percolation thresholds (at 0.8 vol%) and higher electrical conductivity values than those of samples extruded by capillary and injection molding. Shear induced orientation of MWCNT was observed via scanning electron microscopy, in the direction of flow in a PC matrix during the extrusion process. The surface resistivity rose with increasing shear rate, because of the breakdown of the network junctions between MWCNTs. For real applications such as injection molding and the extrusion process, the amount of the MWCNT in the composite should be carefully selected to adjust the electrical conductivity.

Effect of particle size on graphite reinforced conductive polymer composites (입자의 크기에 따른 흑연 보강 전도성 고분자 복합재료의 특성 연구)

  • Heo, S.I.;Yun, J.C.;Oh, K.S.;Han, K.S.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.257-260
    • /
    • 2005
  • Graphite reinforced conductive polymer composites were fabricated by the compression molding technique. Graphite powder was mixed with an phenol resin to impart electrical property in composites. The ratio and particle size of graphite powder were varied to investigate electrical conductivity of cured composites. In this study, graphite reinforced conductive polymer composites with high filler loadings(>66wt.%) were manufactured to accomplish high electrical conductivity. With increasing the loading ratio of graphite powder, the electrical conductivity and flexural strength increased. However. above 80wt.% filler loadings, flexural strength decreased due to lack of resin. Regardless of graphite particle size, electrical conductivity wasn’t varied. On the other hand, with decreasing particle size, flexural strength increased due to high specific surface area.

  • PDF

Comparison of electric conductivity of nano composites for bipolar plate of PEM fuel cell (PEM 연료전지 분리판용 나노복합재의 전도성 비교)

  • Lee H.S.;Jung W.K.;Ahn S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1136-1139
    • /
    • 2005
  • As alternative materials for bipolar plate of PEM Fuel Cells, carbon composites were fabricated by compression molding. In this study, four types of nano particles, such as Carbon nanotubes, Carbon black, GX-15 and P-15 were mixed with epoxy resin to provide electric conductivity and structural properties. By increasing pressure during molding and volume ratio of nano particles, the physical contact among particles was improved resulting in increased electric conductivity. Surface resistance test showed, P-15 particles have the highest electric conductivity.

  • PDF

Preparation and Characterization of Highly Conductive Nickel-coated Glass Fibers

  • Kim, Byung-Joo;Choi, Woong-Ki;Song, Heung-Sub;Park, Jong-Kyoo;Lee, Jae-Yeol;Park, Soo-Jin
    • Carbon letters
    • /
    • v.9 no.2
    • /
    • pp.105-107
    • /
    • 2008
  • In this work, we employed an electroless nickel plating on glass fibers in order to enhance the electric conductivity of fibers. And the effects of metal content and plating time on the conductivity of fibers were investigated. From the results, island-like metal clusters were found on the fiber surfaces in initial plating state, and perfect metallic layers were observed after 10 min of plating time. The thickness of metallic layers on fiber surfaces was proportion to plating time, and the electric conductivity showed similar trends. The nickel cluster sizes on fibers decreased with increasing plating time, indicating that surface energetics of the fibers could become more homogeneous and make well-packed metallic layers, resulting in the high conductivity of Ni/glass fibers.

Theoretical Model and Experimental Analysis of Electrical Conductivity in Hydrogenated Amorphous Silicon (비정질 실리콘의 전기 전도도에 대한 이론적 모델 및 실험적 분석)

  • Kim, Yong-Sang;Park, Jin-Seok;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.127-130
    • /
    • 1989
  • This paper reports the theoretical model and the experimental results regarding to the electrical conductivity of hydrogenated amorphous silicon (a-Si:H). The total effective conductance of a-Si:H with a planar structure has been considered as the sum of the conductance of an adsorbate-induced layer, a surface-interface layer, a bulk layer, and a substrate-interface layer. In order to investigate the effects of space charge layers in a-Si:H on the conductivity, the thickness dependence of the conductivity is characterized and the conductivities measured at the upper electrodes deposited on a-Si:H are compared with those measured at the lower electrodes deposited on the glass substrate. From our analysis, the bulk conductivity and the thickness of the space charge layer in a-Si:H are characterized quantitatively.

  • PDF