• Title/Summary/Keyword: Surface conditions

Search Result 9,988, Processing Time 0.036 seconds

CFD Study on the Influence of Atmospheric Stability on Near-field Pollutant Dispersion from Rooftop Emissions

  • Jeong, Sang Jin;Kim, A Ra
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.1
    • /
    • pp.47-58
    • /
    • 2018
  • The aim of this work is to investigate the effect of atmospheric stability on near-field pollutant dispersion from rooftop emissions of a single cubic building using computational fluid dynamics (CFD). This paper used the shear stress transport (here after SST) k-${\omega}$ model for predicting the flow and pollutant dispersion around an isolated cubic building. CFD simulations were performed with two emission rates and six atmospheric stability conditions. The results of the simulations were compared with the data from wind tunnel experiments and the result of simulations obtained by previous studies in neutral atmospheric condition. The results indicate that the reattachment length on the roof ($X_R$) obtained by computations show good agreement with the experimental results. However, the reattachment length of the rooftop of the building ($X_F$) is greatly overestimated compared to the findings of wind tunnel test. The result also shows that the general distribution of dimensionless concentration given by SST k-${\omega}$ at the side and leeward wall surfaces is similar to that of the experiment. In unstable conditions, the length of the rooftop cavity was decreased. In stable conditions, the horizontal velocity in the lower part around the building was increased and the vertical velocity around the building was decreased. Stratification increased the horizontal cavity length and width near surface and unstable stratification decreased the horizontal cavity length and width near surface. Maintained stability increases the lateral spread of the plume on the leeward surface. The concentration levels close to the ground's surface under stable conditions were higher than under unstable and neutral conditions.

A Study on Adhesion Characteristics of Co-cured Long Fiber Prepreg Sheet-Aluminum Hybrid Structures (동시 경화 장섬유 복합재료-알루미늄 혼성 구조물의 접착 특성 연구)

  • Lee, Sung-Woo;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.31 no.1
    • /
    • pp.17-22
    • /
    • 2018
  • Long Fiber Prepreg Sheet (LFPS) has the advantages of excellent production efficiency and formability for complex shapes compared to conventional continuous fiber reinforced composites. When fibrous composites are used with different materials, joining method is important because strength of the joining part determines the strength of the hybrid structure. In this study, the adhesive joint strengths of co-cured LFPS and aluminum were evaluated under various surface treatment conditions and environmental conditions (temperature and moisture conditions). Mechanical abrasion and plasma exposure were used for the surface treatment. The adhesive joints experienced various surface treatments were tested by using single lap joint specimens. Adhesive strengths under various conditions were compared and the most appropriate condition was determined.

Mechanisms of Platelet Adhesion on Elastic Polymer Surfaces: Protein Adsorption and Residence Effects

  • Insup Noh;Lee, Jin-Hui
    • Macromolecular Research
    • /
    • v.9 no.4
    • /
    • pp.197-205
    • /
    • 2001
  • Platelet adhesion onto elastic polymeric biomaterials was tested in vitro by perfusing human whole blood at a shear rate of 100 sec$\^$-1/ for possible verification of mechanisms of initial platelet adhesion perfusion of blood on the polymeric substrates was performed after treatments either with or without pre-adsorption of 1% blood plasma, and either with or without residence of the protein-preadsorbed substrate in phosphate buffered solution. The surfaces employed were elastic polymers such as poly(ether urethane urea), poly(ether urethane), silicone urethane copolymer, silicone rubber and poly(ether urethane) with the anti-calcifying agent hydroxyethane bisphosphate. Each polymer surface treated was exposed in vitro to the dynamic, heparinized whole blood perfused for upto 6 min and the surface area of platelets initially adhered was measured by employing in situ epifluorescence video microscopy. The blood perfusion was performed on the surfaces treated at the following three different conditions: directly on the bare surfaces, after protein pre-adsorption and after residence in buffer for 3 days of the surfaces protein pre-adsorbed for 2 h. The effects of blood plasma pre-adsorption on the initial platelet adhesion was surface-dependent. The amount of the adsorbed fibrinogen and the surface coverage area of the adhered platelets were dependent on the surface conditions whether substrates were bare surfaces or protein pre-adsorbed ones. To test an effect of possible morphological (re)orientations of the adsorbed proteins on the initial platelet adhesion, the polymeric substrate pre-adsorbed with 1% blood plasma was immersed in phosphate buffered solution for 3 days and then exposed to physiological blood perfusion. The surface area of the platelets adhered on these surfaces was significantly different from that of the surfaces treated with protein pre-adsorption only. These results indicated that platelet adhesion was dependent on the surface property itself and pre-treatment conditions such as blood perfusion without any pre-adsorption of proteins, and blood perfusion either after protein pre-adsorption or after subsequent substrate residence in buffer of the substrate pre-adsorbed with proteins. Understanding of these results may guide for better designs of blood-contacting materials based on protein behaviors.

  • PDF

Effect of Water Contamination of the Lubricant and Surface Roughness of Bearing Steel on the Rolling Contact Fatigue Life (윤활유의 수분혼입 및 베어링강의 표면 조도가 구름접촉 피로수명에 미치는 효과)

  • Heo, Tae Hyeon;Sim, Chung-Ki;Kim, Hong Seok;Shin, Ki-Hoon;Cheong, Seong Kyun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • A large amount of research has been performed on the rolling contact fatigue(RCF) life of bearings, since it directly affects the safety and reliability of mechanical systems. It is well known that rolling contact fatigue life is influenced by several parameters including contact pressure, oil contamination by water or metal particles, and the surface conditions of bearings. However, the detailed damage mechanisms involved in rolling contact fatigue have not been clearly identified yet. In this paper the effects of water contamination of the lubricant and surface roughness of bearing steel on the rolling contact fatigue life were investigated. Two types of specimens with different surface roughness values were prepared through turning and lapping operations. They were tested under two different lubrication conditions, i.e. oil lubricant with 100% of oil and the water contaminated condition with 80% of oil and 20% of water using the rolling contact fatigue testing machine. The surface damage induced by the rolling contact fatigue was observed by using atomic force microscope(AFM). Experimental results show that the rolling contact fatigue life, $L_{10}$ was reduced by 24 to 33% depending on the lubrication condition. The reduction of fatigue life in the range of 53 to 57% was also observed at different surface roughness conditions.

Studies on the Surface Color and Tensile Property of Hair according to Bleaching Treatment (모발(毛髮)의 탈색정도(脫色程度)에 따른 인장특성(引長特性)과 표면색 변화 연구(表面色 變化 硏究))

  • Kim, Kyung-Sun;Jeon, Dong-Won;Ha, Byung-Jo
    • Journal of Fashion Business
    • /
    • v.10 no.1
    • /
    • pp.94-105
    • /
    • 2006
  • Hair bleaching is a treatment process in which the melanic pigment is oxidized by hydrogen peroxide. With the increase of the number of treatments, $1{\sim}10$ levels of various colors develop, the hair luster diminishes, and the appearance becomes very rough. In this study, by changing the number of hair bleaching and bleaching conditions, the changes in the degree of hair damage and its process were observed through the use of scanning electron microscopy. The color changes were also compared through the use of spectrophotometer. In order to study the physical changes of the bleached hairs and to search for the optimum conditions to keep the hair damages minimum during bleaching, tensile properties were measured and reviewed. By increasing the number of hair bleaching and by the severe conditions, the scales became eroded and the protection layers were decreased, and the oxidation reached the inner sectors resulting in rough surface and fibrillation. The surface of the hairs became bright yellowish and transparent by the bleaching of melanic pigments or by the destruction of pigments. With the increase of bleaching degree, in terms of physical changes, the breaking strength decreased while the elongation increased a little.

Oceanographic Conditions in the Neighboring Seas of Cheju Island and the Appearance of Low Salinity Surface Water in May 2000 (2000년 5월 제주도 주변해역의 해황 및 표층 저염분수의 출현)

  • KIM Sang Hyun;RHO Hong Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.2
    • /
    • pp.148-158
    • /
    • 2004
  • In the adjacent seas of Cheju Island, the oceanographic conditions show low salinity surface waters starting in May. This water flows from the southeast part of the China Coastal Water, which flows southeastward along the Great Yangtze Sand Bank until April, with the help of southeasterly winds and flows from the adjacent sea off Cheju Island. In May, the Tsushima Warm Current and the low salinity surface water fluctuate in short and long-term periods as influenced by Yellow Sea Cold Water, which flows to the bottom layer at the western entrance of Cheju Strait. Temperature and salinity fronts in the northeastern sea area of U Island are formed in the boundary area between the Tsushima Warm Current, which expands towards Cheju Island from the southeastern sea area of Cheju Island and Hows out from the eastern entrance of the strait. Seasonally, additional oceanographic conditions, such as coastal counter-currents, which flow southward, appears within limited areas in the adjacent eastern and western seas of Cheju Island.

Optimization of Welding Parameters for Resistance Spot Welding of TRIP Steel using Response Surface Methodology (저항 점 용접에서 반응표면분석법을 이용한 고장력 TRIP강의 최적 용접 조건 설정에 관한 연구)

  • 박현성;김태형;이세헌
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.76-81
    • /
    • 2003
  • Due to the environmental problem, automotive companies are trying to reduce the weight of car body. Therefore, WP(Transformation Induced Plasticity) steels, which are hish strength and ductility have been developed. The application of TRIP steel to the members has been reported to increase the energy absorption capability. Welding process is a complex process; therefore deciding the optimal welding conditions is an effective method on the basis of the experimental data. However, using a trial-and-error method from the beginning in such a wide area, in order to decide the optimal conditions requires too many numbers of experiments. To overcome these problems and to decide the optimal conditions, response surface methodology was used. Response surface methodology is a collection of mathematical and statistical techniques that are for the modeling and analysis of problems in which a response of interest is influenced by several variables and the objective is to optimize this response. The introduced method was applied to the resistance spot welding process of the TRIP steel and the welding parameters were optimized. (Received December 6, 2002)

3D Wear Analysis of Valve Assemblies by Using the Machine Vision (머신비전을 이용한 밸브어셈블리의 3차원 마멸특성 분석)

  • Park Chang-Woo;Chung Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.496-504
    • /
    • 2006
  • Wear of engine valves and seat inserts is a major factor affecting engine performance. In order to improve quality and life of valve assemblies, wear mechanism and 3-D surface topography should be analyzed according to operating conditions of the engine. After developing an engine simulator that generates valve speed up to 90Hz and temperature up to $900^{\circ}C$ as well as controls test load, wear experiments have been conducted for two different engine speeds as 10Hz and 25Hz. In order to observe the wear characteristics and monitor surface conditions of the valve assemblies, a cost-effective 3-D wear analysis system based on the shape from focus(SFF) and machine vision has been fabricated in this paper. 3-D surface topography of the valve assemblies has been analyzed to understand the wear behavior according to operating conditions of the engine. Consequently, wear volume of the valve assemblies is quantized by using the developed 3-D wear analysis system.

Development of Corrosion Rust Removing Unit for Small Ship Propeller (소형선박용 프로펠러의 부식 녹 제거장치 개발)

  • Kim, Gui-Shik;Han, Se-Woong;Hyun, Chang-Hae
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.72-77
    • /
    • 2005
  • The materials used in a ship screw propeller are commonly made with brass. The seawater corrosion and seawater cavitation of the screw propeller reduces the propulsive performance of the ship. In screw manufacturing, the corrosion rust of the screw propeller is removed through a hand grinding method. The grinding process produces dust of the heavy metals from the brass. The dust creates a poor working environment that is harmful to the health of the workers. An automatic corrosionrust removing apparatus, using a blasting method, was developed for the improvement of screw polishing conditions and its working environment. The performance of this apparatus was investigated by surface roughness, weight loss rate, hardness, electrochemical corrosion resistance, and cavitation erosion, after removing of the corrosion rust under various blasting conditions. Two medias of alumina and emery were used in this experiment. The surface roughness and hardness of the screw were improved by this apparatus. The electrochemical corrosion potential (Ecorr) and current density (Icorr) were measured by the dynamic polarization method, using a potentiostat,under the conditions of surface polishing with grinding, blasting, wire brushing, and fine sand papering. The test results prove that the new corrosion rust-removing apparatus improves the surface performance of a screw propeller.

Spatial and Monthly Changes of Sea Surface Temperature, Sea Surface Salinity, Chlorophyll a, and Zooplankton Biomass in Southeastern Alaska: Implications for Suitable Conditions for Survival and Growth of Dungeness Crab Zoeae

  • Park, Won-Gyu
    • Fisheries and Aquatic Sciences
    • /
    • v.10 no.3
    • /
    • pp.133-142
    • /
    • 2007
  • To investigate conditions for the survival and growth of Dungeness crab zoeae in situ, spatial and monthly changes of sea surface temperature (SST), sea surface salinity (SSS), Chlorophyll ${\alpha}$ (Chl ${\alpha}$), and zooplankton biomass were measured in four transects: upper Chatham, Icy Strait, Cross Sound, and Icy Point in southeastern Alaska from May to September, 1997-2004. Monthly mean SST was coldest in May, increased throughout the summer months, and decreased in September. SST was coldest in the Cross Sound transect, intermediate in the upper Chatham and Icy Strait transects, and warmest in the Icy Point transect. SSS of northern stations in the upper Chatham and Icy Strait transects decreased throughout the summer months and increased in September, while that of other transects did not vary. Monthly mean Chl ${\alpha}$ was highest in May and decreased thereafter. Chl ${\alpha}$ in the upper Chatham and Icy Strait transects were relatively higher from May through September than those in the Cross Sound and Icy Point transects. Mean zooplankton biomass was highest in the Icy Strait transect in May and lowest in the Icy Point transect in September. This research suggests that oceanographic conditions during the season of Dungeness crab zoeae in southeastern Alaska may not constrain the survival and growth of Dungeness crab zoeae.