• Title/Summary/Keyword: Surface conditions

Search Result 9,967, Processing Time 0.041 seconds

Developing a Solution to Improve Road Safety Using Multiple Deep Learning Techniques

  • Humberto, Villalta;Min gi, Lee;Yoon Hee, Jo;Kwang Sik, Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.85-96
    • /
    • 2023
  • The number of traffic accidents caused by wet or icy road surface conditions is on the rise every year. Car crashes in such bad road conditions can increase fatalities and serious injuries. Historical data (from the year 2016 to the year 2020) on weather-related traffic accidents show that the fatality rates are fairly high in Korea. This requires accurate prediction and identification of hazardous road conditions. In this study, a forecasting model is developed to predict the chances of traffic accidents that can occur on roads affected by weather and road surface conditions. Multiple deep learning algorithms taking into account AlexNet and 2D-CNN are employed. Data on orthophoto images, automatic weather systems, automated synoptic observing systems, and road surfaces are used for training and testing purposes. The orthophotos images are pre-processed before using them as input data for the modeling process. The procedure involves image segmentation techniques as well as the Z-Curve index. Results indicate that there is an acceptable performance of prediction such as 65% for dry, 46% for moist, and 33% for wet road conditions. The overall accuracy of the model is 53%. The findings of the study may contribute to developing comprehensive measures for enhancing road safety.

Evaluation of Corrosion and Cavitation Erosion Resistance of Sealed Aluminum Alloy after Anodizing Treatment in Seawater (양극산화 후 실링처리된 알루미늄 합금의 해수 내 내식성과 캐비테이션 침식 저항성 평가)

  • Park, Il-Cho;Lee, Jung-Hyung;Han, Min-Su;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.2
    • /
    • pp.87-94
    • /
    • 2018
  • Various sealing techniques were applied to the anodized 5083 aluminum alloy for marine environment to reduce corrosion and cavitation erosion damage. Electrochemical experiments and cavitation erosion tests were conducted to evaluate the corrosion resistance and cavitation resistance of the anodic oxide film treated with sealing in natural seawater solution. Then, damaged surface morphology was analyzed by scanning electron microscope(SEM) and 3D microscope. As the results of the electrochemical experiments, it was observed that the surface damage of all the experimental conditions in the anodic polarization experiment was locally grown by the combination of crack and corrosion damage. In the Tafel analysis, the corrosion resistance of all sealing treatment conditions was improved compared to the anodizing. On the other hand, cavitation erosion tests showed that the anodizing and all the sealing treatment conditions generated local pit damage by cavitation erosion attack and grew to crater damage in the observation of damaged surface by SEM. Also, the weight loss and the surface damage depth measured with the experiment time presented that most of the sealing treatment conditions showed better cavitation erosion resistance than the anodizing, and they had an incubation period at the beginning of the experiment.

The Effects of Altered Surface conditions on Balance Ability for the Patients with Hemiplegia (치료면의 질이 편마비환자의 균형에 미치는 효과)

  • Jeong, Young-June;Youn, Jung-Ho;Kim, Gyu-Yong
    • Journal of Korean Physical Therapy Science
    • /
    • v.15 no.1
    • /
    • pp.67-74
    • /
    • 2008
  • A decrease in the ability to maintain static and dynamic balance after stroke could be related to the inability to select reliable sensory information in producing relative motor action needed to maintain postural stability. The purpose of this study was to compare the effects of two different types of surface conditions on the balancing ability of subjects with stroke. Eighteen hemiparetic subjects were assigned to an experimental and control group participating in a six-week rehabilitative therapeutic exercise program focusing on balance and mobility. Exercises were performed 3 to 5 times per week in a stable surface condition by the control group, and in an unstable surface condition by the experimental group. Pre- and post test assessments involved the measurement of the static balance and dynamic balance, respectively by 7-item Berg Balance Scale-3P and by Pro-3 Balance System. Results showed that under the unstable surface condition, static balance in the experimental group showed more improvement than that of the control group.(Statistically, not very significant.) All the aspects of dynamic balance and mediolateral sway(balance) improved significantly than those of the control group. However, there were no significant differences between two groups. Overall, it can be concluded that under the unstable surface condition, the rehabilitative therapeutic exercise programs are effective in improving the dynamic balance of stroke subjects. The results suggest that the adaptation of the unstable surface in the rehabilitative therapeutic exercises could be effective for the patients with hemiplegia in balance. Further studies are needed to confirm the effectiveness of the unstable surface on improving balance and postural stability of hemiplegics.

  • PDF

Effects of Atmospheric Pressure Microwave Plasma on Surface of SUS304 Stainless Steel

  • Shin, H.K.;Kwon, H.C.;Kang, S.K.;Kim, H.Y.;Lee, J.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.268-268
    • /
    • 2012
  • Atmospheric pressure microwave induced plasmas are used to excite and ionize chemical species for elemental analysis, for plasma reforming, and for plasma surface treatment. Microwave plasma differs significantly from other plasmas and has several interesting properties. For example, the electron density is higher in microwave plasma than in radio-frequency (RF) or direct current (DC) plasma. Several types of radical species with high density are generated under high electron density, so the reactivity of microwave plasma is expected to be very high [1]. Therefore, useful applications of atmospheric pressure microwave plasmas are expected. The surface characteristics of SUS304 stainless steel are investigated before and after surface modification by microwave plasma under atmospheric pressure conditions. The plasma device was operated by power sources with microwave frequency. We used a device based on a coaxial transmission line resonator (CTLR). The atmospheric pressure plasma jet (APPJ) in the case of microwave frequency (880 MHz) used Ar as plasma gas [2]. Typical microwave Pw was 3-10 W. To determine the optimal processing conditions, the surface treatment experiments were performed using various values of Pw (3-10 W), treatment time (5-120 s), and ratios of mixture gas (hydrogen peroxide). Torch-to-sample distance was fixed at the plasma edge point. Plasma treatment of a stainless steel plate significantly affected the wettability, contact angle (CA), and free energy (mJ/$m^2$) of the SUS304 surface. CA and ${\gamma}$ were analyzed. The optimal surface modification parameters to modify were a power of 10 W, a treatment time of 45 s, and a hydrogen peroxide content of 0.6 wt% [3]. Under these processing conditions, a CA of just $9.8^{\circ}$ was obtained. As CA decreased, wettability increased; i.e. the surface changed from hydrophobic to hydrophilic. From these results, 10 W power and 45 s treatment time are the best values to minimize CA and maximize ${\gamma}$.

  • PDF

Numerical technique for chloride ingress with cover concrete property and time effect

  • Lee, Bang Yeon;Ismail, Mohamed A.;Kim, Hyeok-Jung;Yoo, Sung-Won;Kwon, Seung-Jun
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.185-196
    • /
    • 2017
  • Durability problems initiated from steel corrosion are unseen but critical issues, so that many researches are focused on chloride penetration evaluation. Even if RC (Reinforced Concrete) structures are exposed to normal environment, chloride ingress varies with concrete surface conditions and exposed period. This paper presents an analysis technique for chloride behavior evaluation considering time effect on diffusion and surface conditions assumed as double-layered system. For evaluation of deteriorated surface condition, field investigation was performed for concrete pavement exposed to deicing agent for 18 years. In order to consider enhanced surface concrete, chloride profiles in surface-impregnated concretes exposed to chloride attack for 2 years from previous research were investigated. Through reverse analysis, effectively deteriorated/enhanced depth of surface and the related reduced/enlarged diffusion coefficient in the depth are simulated. The proposed analysis technique was evaluated to handle the chloride behavior more accurately considering changes of chloride ingress within surface layer and decreased diffusion coefficient with time. For the concrete surface exposed to deicing agent, the deteriorated depth and enlarged diffusion coefficient are evaluated to be 12.5~15.0 mm and 200% increasing diffusion coefficient, respectively. The results in concrete containing enhanced cover show 10.0~12.5 mm of impregnated depth and 85% reduction of chloride diffusion in tidal and submerged conditions.

Study on Infrared Image Generation for Different Surface Conditions with Different Sensor Resolutions (물체의 표면 상태와 센서의 해상도에 따른 적외선 영상 구현 연구)

  • Choi, Jun-Hyuk;Shin, Jong-Mook;Kim, Jung-Ho;Kim, Tae-Kuk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.342-349
    • /
    • 2010
  • This paper is a foundation work in developing a software for generating infrared images from a scene with various objects. The spectral radiance received by a remote sensor is consisted of the self-emitted, reflected and scattered components. In general, the self-emitted component is the most important part for generating Infrared signatures from the object. In this paper, the infrared image generation considering various surface temperature and optical surface property of a flat plate is demonstrated in MWIR($3{\sim}5{\mu}m$) and LWIR($8{\sim}12{\mu}m$) regions for different spatial resolutions of the images. Resulting spectral radiance values in the MWIR($3{\sim}5{\mu}m$) and LWIR($8{\sim}12{\mu}m$) regions arrived at the infrared sensor are compared numerically and graphically by recognizing that they are strongly dependent on the surface conditions such as the surface temperature and the surface emissivity. And these infrared images are also shown to be strongly dependent on the resolutions of the infrared imaging devices as well. This study reveals that the surface conditions are more dependent on the radiance level from the surface while the resolution of the imaging device is more responsible for identifying the shape of object.

Choice Stepping Reaction Time under Unstable Conditions in Healthy Young and Older Adults: A Reliability and Comparison Study

  • Lim, Ji Young;Lee, Seong Joo;Park, Dae-Sung
    • The Journal of Korean Physical Therapy
    • /
    • v.33 no.6
    • /
    • pp.265-271
    • /
    • 2021
  • Purpose: We aimed to analyze the reliability of the test for choice stepping reaction time (CSRT) under an unstable surface and determine whether there were differences in CSRT between support surface conditions (stable vs. unstable conditions) and between age groups (young adults vs. community-dwelling older adults). Methods: Twenty healthy community-dwelling older adults and twenty young adults performed the stepping task under an unstable condition over two visits. The mean of the two trials measured for each visit was used for the analysis. The test-retest reliability was analyzed using intra-class correlation coefficient (ICC) with a 95% confidence interval, standard error of measurement (SEM), and minimal detectable change (MDC). Differences in CSRT between support surface conditions and age groups were analyzed using the independent t-test with Bonferroni correction. Results: Excellent consistency was observed for ICC >0.90 in both groups. Moreover, the SEM and MDC values of the CSRT in older and young adults were 0.03 and 0.09 and 0.01 and 0.04, respectively. There was a significant difference in the CSRT between the age groups under stable (p<0.001) and unstable conditions (p<0.001). Conclusion: The findings demonstrated that the test for CSRT under an unstable condition had reliable results in both groups. Although older adults demonstrated longer reaction times than younger adults in all surface conditions, increasing the balance control demand by implementing a choice stepping task concomitant with a balance task had no influence on the reaction time in both age groups.

Effect of Korean Red Ginseng extraction conditions on antioxidant activity, extraction yield, and ginsenoside Rg1 and phenolic content: optimization using response surface methodology

  • Lee, Jin Woo;Mo, Eun Jin;Choi, Ji Eun;Jo, Yang Hee;Jang, Hari;Jeong, Ji Yeon;Jin, Qinghao;Chung, Hee Nam;Hwang, Bang Yeon;Lee, Mi Kyeong
    • Journal of Ginseng Research
    • /
    • v.40 no.3
    • /
    • pp.229-236
    • /
    • 2016
  • Background: Extraction conditions greatly affect composition, as well as biological activity. Therefore, optimization is essential for maximum efficacy. Methods: Korean Red Ginseng (KRG) was extracted under different conditions and antioxidant activity, extraction yield, and ginsenoside Rg1 and phenolic content evaluated. Optimized extraction conditions were suggested using response surface methodology for maximum antioxidant activity and extraction yield. Results: Analysis of KRG extraction conditions using response surface methodology showed a good fit of experimental data as demonstrated by regression analysis. Among extraction factors, such as extraction solvent and extraction time and temperature, ethanol concentration greatly affected antioxidant activity, extraction yield, and ginsenoside Rg1 and phenolic content. The optimal conditions for maximum antioxidant activity and extraction yield were an ethanol concentration of 48.8%, an extraction time 73.3 min, and an extraction temperature of $90^{\circ}C$. The antioxidant activity and extraction yield under optimal conditions were 43.7% and 23.2% of dried KRG, respectively. Conclusion: Ethanol concentration is an important extraction factor for KRG antioxidant activity and extraction yield. Optimized extraction conditions provide useful economic advantages in KRG development for functional products.

Leidenfrost Points Tuned via Surface Coating and Structures

  • Jeon, Deok-Jin;Lee, Jun-Young;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.126.1-126.1
    • /
    • 2015
  • A quantitative relationship between Leidenfrost point and surface characteristics such as surface material and roughness is investigated. Based on the relationship, we have fabricated the surfaces with their Leidenfrost points (LFP) tuned by controlling surface coating and structures. As discovered by Leidenfrost, liquids placed on a hot plate levitate on the gas phase-air gap formed by the vaporization of liquids. This phenomenon is called 'Leidenfrost effect'. A change of LFP has attracted many researchers for several years but the ability to tune LFP is still a remaining issue. Many of previous work has progressed for various conditions so the systematic approach and analysis are needed to clearly correlate the LFP and the surface conditions. In this report, we investigate a relation of surface energy and LFP using various coating materials such as Octadecyltrichlorosilane (OTS) and 1H, 1H, 2H, 2H-Perfluorooctyltrichlorosilane (FOTS). Also, we analyze how surface roughness affects LFP via surface micro structuring with ICP-RIE fabrication process. The improved understanding can have potential applications such as the control of liquid droplet behavior at elevated temperatures for efficient cooling system.

  • PDF

Die Life Estimation of Hot Forging for Surface Treatment and Lubricants

  • Dong-Hwan;Byung-Min;Chung-Kil
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.5-13
    • /
    • 2004
  • This study explains the effects of lubricant and surface treatment on the life of hot forging dies. The thermal load and thermal softening, that occur when there is contact between the hotter billet and the cooler dies in hot forging, cause wear, thermal cracking and fatigue, and plastic deformation. Because the cooling effect and low friction are essential to the long life of dies, the proper selection of lubricant and surface treatment is very important in hot forging process. The two main factors that decide friction and heat transfer conditions are lubricant and surface treatment, which are directly related to friction factor and surface heat transfer coefficient. Experiments were performed for obtaining the friction factors and the surface heat transfer coefficients in different lubricants and surface treatments. For lubrication, oil-base and water-base graphite lubricants were used, and ion-nitride and carbon-nitride were used as surface treatment conditions. The methods for estimating die service life that are suggested in this study were applied to a finisher die during the hot forging of an automobile part. The new techniques developed in this study for estimating die service life can be used to develop more feasible ways to improve die service life in the hot forging process.